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Abstract

We investigate the role of information frictions in migration. Using novel moment inequalities

and data on internal migration in Brazil, we estimate worker preferences and migration

costs while allowing for unobserved worker-specific information sets. We find that common

estimation procedures overestimate migration costs and underestimate the importance of

expected wages in migration decisions. Model specification tests indicate that workers have

limited and heterogeneous information on location-specific wages. According to our estimated

model, workers’ limited wage information plays a quantitatively important role in reducing

migration flows and worker welfare and in limiting the effect of policies that reduce migration

costs.
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1 Introduction

Migration is among the most effective ways for workers to improve their economic conditions.

However, even within countries, migration rates are low. High migration costs and a lack

of information on destination characteristics can reduce migration, but disentangling their

roles is difficult, as researchers rarely observe what workers know. Studies often place strong

assumptions on migrants’ information and focus on estimating migration costs, sometimes

interpreting them as accounting for information frictions. However, information frictions

affect migration differently from costs. While costs affect how beneficial a move is, lack

of information does not but may lead to mistakes in people’s choices. Increasing access to

information has thus the potential to improve workers’ location decisions and, in doing so,

enhance the benefits of policies that reduce migration costs.

We introduce a moment inequality procedure to separately identify the role of information

frictions and migration costs in workers’ location choices. Crucially, our procedure is valid

even if workers’ information differs in ways unobserved to the researcher. We apply it to data

on formally employed workers in Brazil to answer four questions. What do workers know

about wages in different locations? How does allowing for unobserved workers’ information

affect estimates of how they trade off expected wage gains against migration costs when

choosing their location? How would workers’ location choices change if their information

changed? How does workers’ information mediate the impact of changes in migration costs?

We obtain four main results. First, workers generally only have coarse information on

location-specific wages. However, those living in areas with better internet access or larger

populations are better informed. Second, our estimates of the migration elasticity to expected

wages are three times larger than those obtained using common estimation procedures, which

place stronger assumptions on workers’ information, whereas our migration cost estimates are

21% lower on average. Third, migration rates would increase significantly if workers had full

information on location-specific wages. Fourth, researchers assuming workers’ information is

better than it truly is overestimate the welfare gains from reductions in migration costs.

Our baseline analysis is based on a static model that incorporates expectations on wages,

migration costs, amenities, and prices, as well as idiosyncratic preferences, as drivers of work-

ers’ location choices.1 We impose no restriction on wage expectations beyond assuming these

are rational; as a result, expectations on wages may vary across workers with different infor-

mation sets, which we treat as potentially heterogeneous across every worker and unobserved

to the researcher. Conversely, for each destination, we assume expectations on migration

costs, amenities, and prices are common across workers sharing a prior location of residence,

1In Appendix G, we extend our analysis to models with sunk migration costs and forward-looking workers.
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but allow them to vary flexibly across these worker groups, and impose no restriction on their

rationality. Thus, while wage expectations give rise to individual unobserved heterogeneity,

expected migration costs, amenities, and prices are captured by destination-specific effects

that may vary across workers depending on their prior location.2 A second source of unob-

served heterogeneity in workers’ choices is the presence of idiosyncratic preferences, which we

assume are independent across destinations and follow a type I extreme value distribution.

Our modeling of expected migration costs, amenities, and prices as captured by origin-

by-destination fixed effects implies that the number of preference parameters increases in

the square of the number of locations considered in the analysis. When studying migration

decisions, workers’ feasible set is often large and, thus, the number of fixed effects to estimate

will also be large. Estimating high-dimensional parameter vectors using moment inequalities

is computationally challenging when using standard procedures. We introduce a moment

inequality procedure to calculate confidence intervals on each parameter in models featuring

potentially large choice sets, choice-specific fixed effects, and information sets that may vary

between any two agents in ways unobserved to the researcher.

Key for our procedure is a new type of moment inequality that we call bounding inequality.

To derive it, we compare workers’ expected utility in any two locations in their choice set,

obtaining as a result a conditional moment equality that depends on a concave function of

the worker’s expected utility difference in those two locations.3 The conditioning set in this

moment equality is a covariate vector assumed to belong to the worker’s information set.

From this equality, we derive moment inequalities by bounding the concave function from

above by its tangent at any point. Importantly, the resulting inequalities are linear in the

worker’s expected utility difference between the two locations. We then substitute workers’

unobserved wage expectations with the ex post realized wages. While this introduces workers’

expectational errors in the moment, the rational expectations assumption implies these are

mean zero conditional on any variable in the worker’s information set. This property of

expectational errors, combined with the linearity of the bounding inequality, leaves this one

unaffected. The resulting moment inequality thus depends on the difference in the fixed

effects between the two locations being compared, as well as on the utility difference that

arises from any wage variation between both locations.4

2Our model may be estimated separately for worker groups defined by gender, race, or education level,
allowing thus expected amenities, migration costs, and prices to vary flexibly across those worker groups.

3To derive our inequalities, we require the relative probability of choosing the two locations to be convex
in the worker’s expected utility difference between them. This requirement holds in multinomial logit models,
but also in nested logit models if the locations being compared belong to the same nest. Thus, our moment
inequality procedure may be applied to a generalized version of our baseline model in which idiosyncratic
preferences are allowed to be correlated across nests of destinations.

4More generally, our inequality will depend on the utility difference coming from any choice characteristic
(e.g., amenities) that is both observed by the researcher and not absorbed by the included fixed effects.
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We use our bounding inequality in a novel two-step estimation procedure. The first step

provides bounds on the wage preference parameter. These are computed by combining the

bounding inequality described above for pairs of workers that share the same origin location

but have distinct observed wages in any given destination; e.g., because they are employed in

different sectors. The resulting inequality does not depend on workers’ expected migration

costs, amenities, and price levels, which are differenced out when comparing the utilities of

two workers of the same origin, but it depends on the wage difference between the two workers.

This inequality can thus be used to compute a confidence interval for the wage preference

parameter. In the second step, we bound one at a time each of the origin-by-destination fixed

effects that capture workers’ expected migration costs, amenities, and prices. Thus, instead

of estimating a joint confidence set for all fixed effects, which is infeasible in settings with

many choices, we estimate separate confidence intervals for each fixed effect. To compute

these, we use the bounds on the wage coefficient estimated in the first step and, in the second

step, combine the bounding inequalities described above with the type of odds-based moment

inequalities introduced in Dickstein et al. (2023).

We show theoretically that our inequalities provide bounds on all parameters when the re-

searcher correctly specifies a subset of workers’ information sets, and point identify them when

such subset coincides with the true information sets. Point identification is thus achieved pre-

cisely when maximum likelihood estimators are consistent, implying no loss of identification

power may be incurred in this case when using our inequalities.5 When the researcher only

observes a proper subset of workers’ information sets, we show in simulations that the max-

imum likelihood estimates are not only biased but also often outside of the bounds defined

by our inequalities. Our simulations also illustrate that, when the researcher misspecifies the

content of the worker’s information set by assuming that a variable belongs to it when it

truly does not, the identified set defined by our moment inequalities may be empty. We use

this result to test how accurate workers’ wage information is.6

We employ our estimator to study internal migration in Brazil. We use data from the

Relação Anual de Informações Sociais (RAIS), which has information on the wage and the

sector and region of work of all formal workers. We estimate our model for the population of

white male workers aged 25-64 with at least a high school degree.7 We define a labor market

as a sector-region pair, and study the information workers in our population have on market-

by-period wage shifters. These shifters account for all demand and supply factors having a

5See corollaries 1 and 3 in Section 3 for more details.
6In some misspecified models, the identified set is non-empty while not including the true parameter

value. See Molinari (2020) for a discussion of this phenomenon, and Andrews and Kwon (2024) and Kaido
and Molinari (2024) for inference procedures in partially identified models robust to misspecification.

7These are, respectively, the largest race, gender, and education categories in RAIS.
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common impact on the wages of all workers in our population in a market and period. To esti-

mate these shifters, we regress wages on sector-by-region-by-period fixed effects (which equal

our shifters of interest) while controlling for worker-by-sector fixed effects (which account for

unobserved worker cross-sectoral comparative advantage) and time-varying worker character-

istics (e.g., sector-specific experience) with sector-specific coefficients. With those shifters in

hand, we estimate the wage preference parameter using exclusively cross-sectoral variation in

the probability that workers in a given origin choose to migrate to a given destination. This is

in contrast with the standard approach in the migration literature of using cross-destination

variation in total migration probabilities to estimate the wage preference parameter. As a

result of our relying exclusively on cross-sectoral variation, unobserved destination-specific

amenities are not a source of potential omitted variable bias in our estimation of the wage

preference parameters.

Our analysis yields four conclusions. First, workers face substantial information frictions.

We reject the common assumption that workers have perfect information on prevalent wages

in every labor market. Furthermore, when exploring how finely workers can classify markets

on the basis of the previous year’s wage shifter, we conclude they can only classify markets

into four bins. In particular, we cannot reject that workers can classify each market as being

in the top 25% by its previous year’s sector-by-region wage shifter, in the 50-75% bracket, in

the 25-50% bracket, or in the bottom 25%, but we reject that every worker can classify every

market according to finer partitions. Concurrently, we find that workers’ wage information is

heterogeneous and that geography plays a key role in driving that heterogeneity. Specifically,

we cannot reject that workers in regions with better internet access or larger populations

have more precise wage information, or that all workers have more accurate information

about wages in markets that are geographically close to their location of residence.

Second, relative to our moment inequalities, estimators common in the migration lit-

erature yield smaller estimates of the migration wage elasticity and larger migration cost

estimates. Specifically, our approach yields a 95% confidence interval for the elasticity of mi-

gration to expected wages centered at 1.5, and does not include the Poisson Pseudo-Maximum

Likelihood (PPML) estimate of 0.5. In addition, our migration cost estimates (measured in

utility terms) are centered around values 21% lower than the PPML estimates. Therefore,

in our setting, standard assumptions on the worker information set drive the researcher to

overestimate the role that non-wage factors play in determining workers’ location choices.8

Third, we quantify workers’ individual welfare gains from improved wage information.

The 95% confidence interval for the welfare change that results from giving the average worker

8The PPML estimator we implement is consistent if all workers employed in the same sector have a common
information set. The difference between the PPML and moment inequality estimates is thus compatible with
our finding that information sets are heterogeneous by worker location.
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perfect wage information is r2.5%, 4.1%s. Importantly, this welfare change is partly driven by

an increase in migration. When perfectly informed about wages, the average worker changes

locations in two consecutive years with probability between 9 and 14%; when they can only

discern quartiles of lagged wage shifters, this probability is between 4 and 7%. Importantly,

this relationship between wage information and migration probabilities is not due to workers

being too pessimistic about wages in locations other than the place of residence, as workers

in our model are always rational, regardless of the information to which they have access.

Fourth, migration costs and information frictions interact in rich ways when determining

workers’ migration rates. As a result, model-implied welfare gains from reductions in migra-

tion costs are sensitive to the researcher’s assumptions on workers’ information. The 95%

confidence interval for the welfare change that results from a 10% decline in migration costs

is r4.2%, 5.6%s if the worker is fully informed about current sector-by-region wage shifters,

but only r2.2%, 2.9%s if they only observe the quartiles of the previous year’s shifters.

Our paper is related to three strands of the literature. First, it relates to work study-

ing workers’ mobility within countries. Our static model incorporates location-specific id-

iosyncratic preferences and fixed migration costs as Tombe and Zhu (2019) and Morten and

Oliveira (2024). In the dynamic extension to our model, we further allow for forward-looking

workers and one-time migration costs as Kennan and Walker (2011). Our contribution is to

show how to estimate static and dynamic migration models without fully specifying workers’

information, and to quantify the impact on model estimates and counterfactual predictions

of misspecifying workers’ information sets. However, our analysis so far has two limitations:

it does not allow workers’ location decisions to depend on unobserved wage determinants,

and all our counterfactual predictions are partial equilibrium.9

Second, we contribute to the literature on information frictions in migration. Recent work

has used randomized or natural experiments to evaluate the impact of workers’ information

on their location choices; e.g., Bryan et al. (2014), Bergman et al. (2020, 2023), Wilson

(2021), and Baseler (2023). In the absence of exogenous variation in information sets, other

studies follow a structural approach. Kaplan and Schulhofer-Wohl (2017) introduce a model

in which workers acquire information on location characteristics through a Bayesian process.

Porcher (2022) extends this approach by endogenizing the information acquisition process

of rationally inattentive workers. Our contribution is to infer the importance of information

frictions while neither observing exogenous shifters of agents’ information sets nor imposing

parametric restrictions on the stochastic process determining these sets.

Third, our paper is related to studies using choice data to identify agents’ preferences when

their expectations of choice characteristics are rational but unobserved. In the absence of

9See Fan et al. (2023) for work incorporating flexible beliefs in a model à la Caliendo et al. (2019).
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measures of agents’ expectations (Manski, 2004), it is common to assume that the researcher

observes agents’ full information sets (Manski, 1991). A recent approach allows the content

of these sets to be partly unobserved by the researcher, but rules out heterogeneity in such

content between agents of the same observable type (Traiberman, 2019). Building on Pakes

(2010), Ho and Pakes (2014), and Pakes et al. (2015), we allow information sets to vary

across agents in unobservable ways, and use moment inequalities to partially identify agents’

preferences in models, static or dynamic, with large choice sets and choice-specific fixed

effects.10 We combine our bounding inequality with the odds-based inequality in Dickstein

and Morales (2018) and Dickstein et al. (2023) to obtain tighter bounds than if each of these

two inequalities were used separately. When applying our estimator to the study of dynamic

models, we combine the bounding inequality with the Euler approach in Morales et al. (2019).

The paper is organized as follows. Section 2 presents a model of worker location choices.

Section 3 describes our moment inequality estimator, and Section 4 illustrates its properties

using simulated data. Section 5 discusses our empirical application. Section 6 concludes.

2 Model of Migration with Incomplete Information

Wemodel the choice of location for workers in a population defined, e.g., by their demographic

characteristics and prior location. Workers in this population are partitioned into S types

defined, e.g., by their sector of employment. While all parameters may vary freely across

populations, we assume parameters do not vary across types. As shown in Appendix F, the

worker’s type may be endogenous and chosen simultaneously with their location.

We index types by s or r and workers by i or j within a type. Defining a variable ylis that

equals one if worker i of type s chooses location l (and zero otherwise), we assume

ylis ” 1tl “ argmax
l1“1,...,L

ErU l1

is|Jissu for l “ 1, . . . , L, (1)

where 1tAu is an indicator function that equals 1 if A is true, U l
is P R denotes the worker’s

utility of choosing l, Jis P Rdis with dis ě 0 is the worker’s information set, and Er¨|Jiss is a
conditional expectation operator reflecting the worker’s beliefs.11

We impose five assumptions on workers’ expected utilities. First, workers’ expectations

are rational; i.e., for any Xis P R, denoting by F p¨|Jisq the cumulative distribution function

10For a different treatment of unobserved information sets, see the work on Bayes correlated equilibria;
e.g., Bergemann and Morris (2013, 2016), Bergemann et al. (2022) and Magnolfi and Roncoroni (2023).

11Equation (1) assumes a common choice set for all workers. The estimator described in Section 3 can be
adapted to allow for heterogeneous choice sets, if these are partly observed by the researcher and independent
of workers’ information sets and location-specific utilities.
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of Xis conditional on Jis, it holds that

ErXis|Jiss “

ż

x

xdF px|Jisq. (2)

Second, the utility of choosing location l for worker i of type s is

U l
is “ ulis ` εlis, (3a)

ulis “ κl ` αwlis, (3b)

where wlis is the natural logarithm of the nominal wage worker i of type s would earn if they

chose location l and α captures the relative importance of wages in workers’ utility. The

terms κl and εlis are the common and idiosyncratic components of all other determinants of

utility. For simplicity, we refer to κl as location l’s amenity, although it will also account for

location-specific log prices and, depending on the definition of the population of study, for

other determinants of workers’ preferences such as migration costs.12

Third, defining εis “ pε1is, . . . , ε
L
isq, we assume that

εis Ď Jis, (4)

where, for vectors X and X 1, we use X Ď X 1 to indicate that the distribution of X conditional

on X 1 is degenerate. Equation (4) imposes that, when making their location choice, worker

i of type s knows εis. It does not restrict which other variables belong to Jis.
Fourth, for worker i of type s, worker j of a type r ‰ s, and locations l and l1, it holds

Er∆wll
1

is |Jis,Jjrs “ Er∆wll
1

is |Jiss “ Er∆wll
1

s |Jiss “ Er∆wll
1

s |Wiss, (5)

with Wis including all elements of Jis other than εis; i.e., Wis “ Jisztεisu. The first equality

in equation (5) imposes that a type-s worker has at least as much information as any worker

of a different type r about the differences in the wage a type-s worker would earn in different

locations. The second equality imposes that the worker’s expected wage difference between

locations l and l1 only depends on the expected difference between type-specific terms. Finally,

the third equality imposes that, once we condition on all other elements of the worker’s

information set, idiosyncratic preferences do not help the worker forecast wages.13

The first equality in equation (5) naturally holds if all workers in the population have the

same information; i.e., if Jis “ Jjr for any i, j, s, and r. It also holds if workers know more

12When workers differing in their prior location are classified into different populations, they may differ in
the value of κl in any l and, thus, these parameters will account for origin-by-destination migration costs.

13Generally, for any variables xlis and xl
1

is, we define ∆xll
1

is ” xlis ´ xl
1

is.
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about their type-specific wage differences than workers of a different type.14 Importantly,

this equality does not restrict the variation in information across workers of the same type.

The second equality in equation (5) is imposed by data limitations. Our moment in-

equality procedure permits to flexibly model the information workers have on payoff-relevant

variables whose ex-post (or realized) value the researcher either observes or can consistently

estimate. Generally, one cannot estimate, for every worker and location, a wage component

that is location- and worker-specific. Hence, we must impose that workers ignore their own

idiosyncratic location-specific wage shifters when making their location choices. In contrast,

equation (5) does not impose any assumption on the information workers have about worker-

by-type or type-by-location wage shifters. Specifically, when types correspond to sectors, we

impose no assumption on the information workers have about their own sectoral comparative

advantage or about sector-by-location specific shocks driving labor demand or supply.15

The third equality in equation (5) is an implication of the exogeneity of idiosyncratic

shocks often assumed in discrete choice models.16

Fifth, and last, denoting by Fεp¨q the cumulative distribution function of εis, it holds

Fεpεis|Wis,Jjrq “ Fεpεis|Wisq “ Fεpεisq “ exp
´

´

L
ÿ

l“1

expp´εlisq
¯

, (6)

for any worker i of type s and worker j of type r. The first equality imposes that a worker’s

idiosyncratic preferences are independent of all other workers’ information sets, including

their own idiosyncratic preferences. The second equality imposes that a worker’s idiosyncratic

preferences are independent of all other elements of their own information sets. The third

equality imposes that εlis is iid across locations and follows a type I extreme value distribution

with location parameter equal to zero and scale parameter equal to one.

Equations (1) to (6) are the only model assumptions we impose. Hence, not only do we

allow for unobserved heterogeneity in workers’ information sets and, as a result, in workers’

wage expectations, but we also leave the wage data-generating process unrestricted. Fur-

thermore, equations (2) to (5) imply ErU l
is|Jiss “ κl ` αErwlis|Wiss ` εlis and, thus, we can

14When types correspond to sectors of employment, equation (5) imposes that, e.g., real estate workers
know more about differences across locations in real estate wages than healthcare workers, and vice versa.

15By assuming that unobserved (to the researcher) wage shifters are unknown to workers when choosing
locations, we rule out the selection mechanism in Roy (1951). We do, however, allow wages to vary by
individual-type is. In our application, individual-sector effects account for much of the variation in individual
wages, thus limiting the role individual-location effects play in determining wages. An alternative is to follow
the procedure in Section 8.2 in Dickstein and Morales (2018) and allow workers to choose locations based on
unobserved wage shifters; computational reasons would then force us to limit the number of parameters in
the wage equation.

16Our model allows for any correlation pattern between κ “ pκ1, . . . , κLq and the wage shifters ws “

pw1
s , . . . , w

L
s q of any type s. It is thus consistent with location-specific amenities and wages being correlated.
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interpret κl as capturing the expectation that all workers in the population have on amenities

in l. Consequently, we allow workers to have irrational expectations on amenities, but restrict

these expectations to be common across workers in the population. Conversely, equation (2)

restricts workers’ wage expectations to be rational, but the flexible modeling of information

sets allows expected wages in any given location to differ across all workers.

We assume the researcher observes a random sample of workers by type. For all workers,

the researcher observes the location choice yis “ py1is, . . . , y
L
isq. Additionally, for all types, the

researcher observes wage shifters ws “ pw1
s , . . . , w

L
s q and a vector zs “ pz1s , . . . , z

L
s q, with zls a

potential predictor of wls. Alternatively, ws may not be observed but consistently estimated.

We do not assume the researcher observes Wis for any sampled worker.

Only differences between the elements of κ are identified. We thus normalize κ1 “ 0. The

goal of estimation is to recover α and pκ2, . . . , κLq, and to learn about workers’ information.

We denote by θ ” pθα, θ2, . . . , θLq the parameter vector with true value θ˚ ” pα, κ2, . . . , κLq.

To infer workers’ information, we test the null hypothesis that, for a given set of locations,

certain wage predictors belong to the information set of all workers in a given group.

3 Estimation Through Moment Inequalities

If the number of choices L is large, θ will be high dimensional. Common moment inequality

inference procedures rely on inverting a test at each point in a grid covering the parameter

space, complicating their applicability in models with large parameter vectors. We propose

a two-step procedure that circumvents these computational challenges and produces a confi-

dence interval for each element of θ individually. In the first step, we compute a confidence

interval for θα using inequalities that difference out the parameters θ2, . . . , θL. In the second

step, for each l “ 2, . . . , L, we derive inequalities that depend only on θα and θl, which we

combine with the first-step confidence interval for θα to obtain a confidence interval for θl.
17

The moment inequalities used in the first step combine those used in the second step.

Thus, for exposition purposes, we first describe the second-step inequalities in Section 3.1.

We then describe in Section 3.2 how we build the first-step inequalities. Section 3.3 explains

how we use these inequalities to estimate confidence intervals for the elements of θ.

3.1 Second-Step Moment Inequalities

We use two types of inequalities to partially identify θl for each l “ 2, . . . , L. In Section 3.1.1,

we introduce a new type of inequality that we name bounding inequality. In Section 3.1.2,

17If ulis included worker-by-location covariates other than the wage wl
is (e.g., worker-by-location amenities),

the first-step inequalities could also be used to compute bounds on the coefficients on those covariates.
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we describe how we apply the odds-based inequality in Dickstein et al. (2023) to our setting.

Both the bounding and the odds-based inequality exploit the same implication of the

model described in Section 2. Specifically, equation (1) implies that, for any worker i of type

s and any two locations l and l1, it holds that

pylis ` yl
1

isqp1tErU l
is ´ U l1

is|Jiss ě 0u ´ ylisq “ 0. (7)

This equation indicates that, for any worker i of type s who chooses location l or location l1

(for whom ylis`y
l1

is “ 1), they would choose l if and only if their expected utility of choosing l is

larger than that of choosing l1; i.e., ylis “ 1 if and only if ErU l
is´U l1

is|Jiss ě 0. As equation (7)

holds for every worker, it must also hold for the average worker with a particular information

set Wis who effectively chooses l or l1. Equations (2) to (6) then imply the following equality :

E

„

exppErulis ´ ul
1

is|Wissq

1 ` exppErulis ´ ul
1

is|Wissq
´ ylis

ˇ

ˇ

ˇ

ˇ

Wis, y
l
is ` yl

1

is “ 1

ȷ

“ 0,

which we can rewrite as

Eryl
1

is ` ylisp´ expp´Erulis ´ ul
1

is|Wissqq|Wiss “ 0, (8)

where expp´Erulis´ul
1

is|Wissqq equals the probability of choosing l1 relative to that of choosing

l. This equality cannot be used to identify θ due to the weak restrictions our model imposes

on the content of Wis for any worker i of type s. However, as shown in sections 3.1.1 and

3.1.2, the convexity of expp´xq in x can be exploited to derive inequalities that do not

depend on Wis and provide non-trivial bounds on θ.18 Specifically, the bounding inequalities

in Section 3.1.1 exploit the fact that any convex function is bounded from below by any

first-order approximation to it, regardless of the approximation point. Conversely, the odds-

based inequalities in Section 3.1.2 exploit the fact that, according to Jensen’s inequality, the

expectation of a convex function is larger than the function of the corresponding expectation.

18The inequalities in sections 3.1.1 and 3.1.2 can be derived if the relative probability of choosing locations
l and l1 is convex (or concave) in the agent’s expected utility difference between them: the relative probability
of choosing l1 over choosing l becomes more (or less) sensitive to Erulis´ul

1

is|Wiss as it increases. This property
holds in multinomial logit models; also in nested logit models when l and l1 belong to the same nest.
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3.1.1 Bounding Moment Inequalities

Given equation (8) and the convexity of expp´xq in x, we can use the first-order approxima-

tion to this function around any point ell
1

is to derive the following moment inequality:

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´Erulis ´ ul
1

is|Wissq|Wiss ě 0. (9)

As this inequality is linear in Erulis´ul
1

is|Wiss, the rationality of workers’ expectations implies:

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ pulis ´ ul
1

isqq|Wiss ě 0. (10)

Finally, given any zs Ď Wis, the Law of Iterated Expectations implies the following inequality:

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ pulis ´ ul
1

isqq|zss ě 0, (11)

which no longer depends on the unobserved information setWis of any worker. The remainder

of this section explains how we use this inequality to derive bounds on θ2, . . . , θL.

Given locations l and l1, we denote by ∆θll1 ” θl ´ θl1 the unknown parameter whose true

value is ∆κll
1

” κl ´ κl
1

. Then, for any two locations l and l1 in the worker’s choice set, a

random vector zs, and a scalar random variable ell
1

is , we define the moment

m
ll1

pzs,∆θll1q ” Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ p∆θll1 ` α∆wll
1

s qq|zss, (12)

which equals the left-hand side of equation (11) but written as a function of ∆θll1 . Theorem

1 establishes a property of this moment when ∆θll1 “ ∆κll
1

.19

Theorem 1 Assume equations (1) to (6) hold. Then, mll1pzs,∆κ
ll1q ě 0 if ell

1

is Ď Jis and

zs Ď Wis.

The proof of Theorem 1 is in Appendix A.1. This theorem implies that, if its conditions

hold, the set of values of ∆θll1 for which

m
ll1

pzs,∆θll1q ě 0 (13)

includes ∆κll
1

regardless of the value of zs, of the locations l and l1 being compared, and of

how the approximation points ell
1

is are chosen. However, which other values of ∆θll1 satisfy

equation (13) depends on these approximation points. Appendix B.1 shows that the set of

19Note that, given the normalization κ1 “ 0, it holds that ∆θl1 “ κl.
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values of ∆θll1 that satisfy the inequality in equation (13) is minimized when:

ell
1

is “ ∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1s. (14)

To provide intuition on how the inequality implied by equations (12) to (14) may be used to

partially identify ∆θll1 , we show in Appendix B.1 that this inequality can be written as

Erylis|zss

Eryl
1

is|zss
expp´αEr∆wll

1

s |zs, y
l
is “ 1sq ď expp∆θll1q. (15)

As this inequality holds for any two locations, we can swap the identity of l and l1 and obtain

Erylis|zss

Eryl
1

is|zss
expp´αEr∆wll

1

s |zs, y
l1

is “ 1sq ě expp∆θll1q. (16)

Equations (15) and (16) provide bounds on the amenity difference ∆θll1 . These bounds

are based on the relative probability with which workers who know zs choose l over l1,

Erylis|zss{Eryl
1

is|zss. As in most spatial models, the mapping between relative choice probabil-

ities and amenity differences is not straightforward, as a location l may be preferred over a

location l1 not only because of a higher amenity value in l but also because of higher expected

wages in l. That is, to infer ∆θll1 , one must first net out the effect of the expected wage dif-

ference between l and l1. This step depends on the assumption placed by the researcher on

workers’ wage expectations.

When the researcher knows workers’ information sets Wis, they can net out the effect of

expected wages exactly by setting zs “ Wis. In this case, the decision to move to l or l1 is

entirely determined by zs and does not provide additional information about workers’ wage

expectations. Therefore, Er∆wll
1

s |zs, y
l
is “ 1s “ Er∆wll

1

s |zs, y
l1

is “ 1s “ Er∆wll
1

s |zss and the

bounds in equations (15) and (16) coincide, point-identifying amenities. We formalize this

intuition in the following Corollary, which we prove in Appendix B.2.

Corollary 1 Assume equations (1) to (6) hold. Then, the bounds in equations (15) and

(16) imply ∆θll1 “ ∆κll
1

if Er∆wll
1

s |zss “ Er∆wll
1

s |Wiss.

When the researcher only observes a subset zs of workers’ information sets Wis, the

decision to move to l or l1 is not entirely determined by zs, and therefore provides addi-

tional information about workers’ wage expectations. In particular, by revealed preferences,

Er∆wll
1

s |zs, y
l
is “ 1s ě Er∆wll

1

s |zs, y
l1

is “ 1s, reflecting that workers choosing location l received

more positive signals about wages in l relative to l1. This is the key intuition behind our

inequalities in equations (15) and (16). By applying these equations, even though we do not

know the exact information sets of workers, we obtain bounds on the amenities.

12



3.1.2 Odds-based Moment Inequalities

As discussed in Dickstein et al. (2023), equation (8), the convexity of expp´xq in x, and the

rationality of workers’ expectations imposed in equation (2) implies the following inequality:

Erylis expp´pulis ´ ul
1

isqq ´ yl
1

is|Wiss ě 0. (17)

Thus, given any zs Ď Wis, the Law of Iterated Expectations implies

Erylis expp´pulis ´ ul
1

isqq ´ yl
1

is|zss ě 0. (18)

The remainder of this section explains how we use this inequality to derive bounds on ∆θll1

for any l and l1. For any two locations l and l1 and a random vector zs, define the moment

m
ll1

o pzs,∆θll1q ” Erylis expp´p∆θll1 ` α∆wll
1

s qq ´ yl
1

is|zss, (19)

which equals the left-hand side of equation (18) but written as a function of the unknown

parameter ∆θll1 . Theorem 2, from Dickstein et al. (2023), establishes a key property of this

moment when evaluated at ∆θll1 “ ∆κll
1

.

Theorem 2 Assume equations (1) to (6) hold. Then, mll1

o pzs,∆κ
ll1q ě 0 if zs Ď Wis.

The proof of Theorem 2, which follows Dickstein et al. (2023), is in Appendix A.2. This

theorem implies that, if its conditions hold, the set of values of ∆θll1 that satisfies

m
ll1

o pzs,∆θll1q ě 0 (20)

includes ∆κll
1

. Appendix B.3 shows that this inequality can be rewritten as

Erylis|zss

Eryl
1

is|zss
Erpexppα∆wll

1

s qq
´1

|zs, y
l
is “ 1s ě expp∆θll1q. (21)

By swapping the identity of locations l and l1 in equation (21), we obtain the inequality

Erylis|zss

Eryl
1

is|zss
pErexppα∆wll

1

s q|zs, y
l1

is “ 1sq
´1

ď expp∆θll1q. (22)

Equations (21) and (22) identify bounds on ∆θll1 . To gain intuition on these bounds, consider

the case in which zs “ Wis, allowing to rewrite equations (21) and (22) as

Erylis|zss

Eryl
1

is|zss
pErexppα∆wll

1

s q|zssq
´1

ď expp∆θll1q ď
Erylis|zss

Eryl
1

is|zss
Erpexppα∆wll

1

s qq
´1

|zss. (23)
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Due to Jensen’s inequality, these inequalities generally only partially identify ∆θll1 . However,

the following corollary describes a case where these bounds coincide, point identifying ∆θll1 .

Corollary 2 Assume equations (1) to (6) hold. Then, the bounds in equations (21) and

(22) imply ∆θll1 “ ∆κll
1

if ∆wll
1

s “ Er∆wll
1

s |Wiss.

We prove Corollary 2 in Appendix B.4. Corollary 2 strengthens the assumptions in Theorem

2 by requiring that workers be fully informed about ∆wll
1

s , ∆w
ll1

s “ Er∆wll
1

s |Wiss. In this

case, the inequality in equation (20) only holds if ∆θll1 equals its true value ∆κll
1

. Thus, the

odds-based inequality point identifies ∆θll1 if workers forecast wages without error. This is

true regardless of the extent to which the researcher observes workers’ information sets.

3.1.3 Combining Bounding and Odds-based Moment Inequalities

There are advantages in using our bounding inequality jointly with the odds-based inequality

in Dickstein et al. (2023). As stated in theorems 1 and 2, the identified sets defined by these

two types of inequality always contain the true parameter value. However, as exemplified

by corollaries 1 and 2, these identified sets may differ. As a result, there may be gains from

combining both types of inequality in estimation; that is, the intersection of both identified

sets may be smaller than each of them individually.

The identified set defined by the odds-based inequality increases in the relevance of the

error affecting workers’ expectations. Intuitively, these inequalities are convex in the agent’s

expectational error. Consequently, Jensen’s inequality implies that the odds-based moment

at any parameter value is larger in expectation the larger the relevance of the expectational

error, making the resulting moment inequality weaker. Thus, if workers are poorly informed

about wages, the identified set defined by the odds-based inequality will be large, including

parameter values quite distinct from the true one. Importantly, this is the case even if the

researcher observes the worker’s true information set. Conversely, the identified set defined

by the bounding inequality is not affected by the worker’s expectational error. Intuitively,

the bounding inequalities are linear in this error, making it irrelevant for the identified set

defined by these inequalities. Thus, even if workers are poorly informed about wages, the

resulting identified set will be tight as long as the researcher observes the key variables used

by workers to form their expectations. Moreover, as indicated in Corollary 1, the bounding

inequality point identifies the parameter of interest if the researcher observes the worker’s

information set. This is important because full observability of the worker’s information set

is generally necessary for standard estimators (e.g., maximum likelihood) to be consistent;

thus, a researcher that uses bounding moment inequalities in her analysis will not suffer from

any loss of identification power whenever those standard estimators are consistent.
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The identified set defined by the bounding inequality increases in the relevance of the

variables that enter the worker’s information set but the researcher does not observe. Intu-

itively, the optimal approximation point in equation (14) is the best approximation to the

worker’s true expected utility difference between locations l and l1 that the researcher can

build with the variables she observes. The larger the mismatch between this point and the

agent’s true expected utility difference between l and l1, the weaker the bounding inequality

is.20 Conversely, the identified set defined by the odds-based inequality is not affected by the

extent to which the worker’s information set is observed by the researcher. Even if workers

have access to information the researcher cannot observe, the identified set defined by the

odds-based inequality will be tight if the worker’s true information set allows them to fore-

cast wages with little error. Moreover, as indicated in Corollary 2, the odds-based inequality

point identifies the parameter of interest if workers do not experience expectational errors.

In sum, the bounding inequality being robust to workers’ expectational errors and the

odds-based inequality being robust to the presence of unobserved variables that belong to

the worker’s true information set implies there often are gains from simultaneously using

both types of inequality. We illustrate this in our simulation in Section 4. In settings such

as ours in which the choice set is large and the worker’s utility depends on choice-specific

fixed effects, the bounding inequality has the extra advantage that it is linear in the utility

difference between any two locations; see equation (11). As shown in Section 3.2, this allows

to combine multiple bounding inequalities in order to difference out the choice-specific fixed

effects, making our two-step estimation procedure feasible.

3.2 First-Step Moment Inequalities

Similarly to how we derive the bounding inequality in equation (11), we derive

Eryl
1

jrpy
l1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ pulis ´ ul
1

isqqq|zs, zrs ě 0, (24a)

Erylispy
l
jr ´ yl

1

jr expp´el
1l
jrqp1 ` el

1l
jr ´ pul

1

jr ´ uljrqqq|zs, zrs ě 0, (24b)

for any locations l and l1, types s and r, random vectors zs and zr, and approximation points

pell
1

is , e
l1l
jrq Ď JisYJjr. Loosely speaking, the moment in equation (24a) compares the utility of

choosing l over l1 for a worker i of type s, and that in equation (24b) compares the utility of

choosing l1 over l for a worker j of type r. If the approximation points in these two moments

20More specifically, the larger the distance between ell
1

is and Erulis ´ ul
1

is|Wiss, the worse the first-order
approximation is and, as a result, the larger the value of the left-hand side of the inequality in equation (9).
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coincide, the sum of the inequalities in equations (24a) and (24b) results in

Erylisy
l
jr ` yl

1

isy
l1

jr ´ ylisy
l1

jr expp´ell
1

isjrqp2 ` 2ell
1

isjr ´ θαp∆ull
1

is ` ∆ul
1l
jrqq|zs, zrs ě 0, (25)

where ell
1

isjr denotes the common approximation point. As all workers, regardless of their type,

have a shared valuation of the amenities in every location, the amenity differences between

locations l and l1 cancel when adding both moments in equation (24); thus, we can substitute

∆ull
1

is ` ∆ul
1l
jr “ αp∆wll

1

s ` ∆wl
1l
r q in equation (25).21 The remainder of this section explains

how we use the inequality in equation (25) to derive bounds on θα. For any locations l and

l1, types s and r, vectors zs and zr, and scalar variable ell
1

isjr, we define the moment

M
ll1

pzs, zr, θαq ”

Erylisy
l
jr ` yl

1

isy
l1

jr ´ ylisy
l1

jr expp´ell
1

isjrqp2 ` 2ell
1

isjr ´ θαp∆wll
1

s ` ∆wl
1l
r qq|zs, zrs, (26)

which equals the left-hand side of equation (25) but written as a function of θα. Theorem 3

establishes a property of the moment in equation (26) when evaluated at θα “ α.

Theorem 3 Assume equations (1) to (6) hold. Then, Mll1pzs, zr, αq ě 0 if ell
1

isjr Ď Jis YJjr,
and pzs, zrq Ď Wis Y Wjr.

The proof of Theorem 3 is in Appendix A.3. This theorem implies that, if its conditions

hold, the set of values of θα for which

M
ll1

pzs, zr, θαq ě 0 (27)

includes α regardless of pzs, zrq, of the locations l and l
1, and of how the approximation points

ell
1

isjr are chosen. However, the set values of θα other than α that satisfy equation (27) depends

on these approximation points. Appendix B.5 shows this set is minimized when:

ell
1

isjr “ θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1s. (28)

As shown in Appendix B.5, equations (27) and (28) jointly imply that

Erylisy
l1

jr|zs, zrs

Er0.5pylisy
l
jr ` yl

1

isy
l1
jrq|zs, zrs

ď exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq. (29)

This inequality yields a lower bound on θα if its right-hand side is increasing in this parameter,

and vice versa. Intuitively, if type-s workers are likely to choose location l whereas type-r

21Ho and Pakes (2014) apply a similar strategy to difference out choice-specific fixed effects in a model
without individual-by-choice idiosyncratic preferences.
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workers are likely to choose l1, as represented by a high value of the ratio on the left-hand

side of equation (29), and type-s workers expect their wage to be higher in l than in l1, and

vice versa, as represented by a positive value of Er0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1s, then

θα cannot be too low. Conversely, if both worker types are still likely to choose locations

l and l1, respectively, but now type-s workers expect their wage to be lower in l than in l1,

and vice versa, as represented by a negative value of Er0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1s,

then θα cannot be too high. Generally, the parameter θα is partially identified. The following

corollary describes when moment inequalities of the type in equation (29) point identify θα.

Corollary 3 Assume equations (1) to (6) hold, ell
1

isjr Ď Jis Y Jfr, pzs, zrq Ď Wis Y Wjr,

∆κll
1

“ 0 and Er∆wll
1

s |zss “ Er∆wll
1

s |Wiss “ Er∆wl
1l
r |zrs “ Er∆wl

1l
r |Wjrs. Then, moment

inequalities of the type in equation (29) can point identify θα.

The proof of Corollary 3 is in Appendix B.6. To understand this corollary, it is useful to

compare it to Corollary 1. The conditions listed in Corollary 3 are more restrictive. The

reason is that, unless these conditions are satisfied, there is a loss of identification power

coming from having to impose the common approximation point in equation (28) on each

of the inequalities in equation (24). When the conditions in Corollary 3 are satisfied, the

approximation point in equation (28) is optimal for each of the two inequalities in equation

(24) (i.e., it coincides with the approximation point in equation (14) for both moments) and

thus no loss of identification power occurs when deriving the inequality in equation (25).

3.3 Using the Inequalities for Estimation

For estimation, we use a set of unconditional moment inequalities that we derive from the

conditional ones introduced in sections 3.1 and 3.2. We describe here how we derive uncon-

ditional bounding moment inequalities from the conditional ones described in Section 3.1.1.

In practice, when computing a confidence interval for the amenity term ∆θll1 , we combine

these unconditional bounding inequalities with unconditional odds-based moment inequali-

ties derived in a similar way from the conditional ones in Section 3.1.2. In Appendix B.7, we

describe how we rely on the conditional inequalities in Section 3.2 to derive the unconditional

inequalities we use to compute a confidence interval for θα.

We implement the following steps to derive k “ 1, . . . , K unconditional moment inequal-

ities from the conditional one described in Section 3.1.1. First, we choose a scalar ∆zll
1

s Ď zs

that is correlated with ∆wll
1

s and that we will use in all K inequalities. Second, for each k,

we choose a subset rzk, zks of the support of ∆zll
1

s and an integer dk. We then build

Erpyl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ p∆θll1 ` α∆wll
1

s qqqgkp∆zll
1

s qs ě 0, (30)
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where the term in parenthesis coincides with the moment function in equation (12) and

gkp∆zll
1

s q “ 1tzk ă ∆zll
1

s ď zku|∆zll
1

s |
dk . (31)

The inequality in equation (30) is implied by that in equation (13) regardless of the choice

of predictor ∆zll
1

s , interval limits zk and zk, and exponent dk. In practice, we fix a q P N and

map zk and zk to consecutive elements of the vector of q-quantiles of the distribution of ∆zll
1

s

across types and location pairs. E.g., if q “ 2 and dk “ 0 for all k, we use K “ 2 inequalities

with instruments g1p∆zll
1

s q “ 1t∆zll
1

s ď medp∆zll
1

s qu and g2p∆z
ll1

s q “ 1tmedp∆zll
1

s q ą ∆zll
1

s u,

which split all observations depending on whether ∆zll
1

s is above or below median. If q “ 4,

similar instruments will split observations according to the quartile ∆zll
1

s belongs to. More

generally, the larger q is, the larger the number of unconditional inequalities we use.

In practice, computing a confidence interval (CI) for ∆θll1 requires computing first a CI

for θα. To compute a 95% CI for ∆θll1 , we first compute 96% CIs for ∆θll1 conditional on each

value of θα in a 99% CI for this parameter. We denote these as Θ̂l
.96pθαq. We then compute

the 95% CI for θl as the union of Θ̂l
.96pθαq for each value of θα in its 99% CI. All our CIs are

computed following the moment selection procedure in Andrews and Soares (2010).22

4 Properties of Moment Inequalities: Simulation

This section uses simulations to illustrate properties of the moment inequalities introduced in

Section 3. Three insights emerge. First, consistent with theorems 1 to 3, when the conditions

in those theorems are satisfied, we obtain intervals that contain the true parameter values

even when workers imperfectly forecast wages and the researcher imperfectly observes agents’

information sets. Second, when the researcher misspecifies agents’ information sets, the

maximum likelihood (ML) estimator is inconsistent and often not within the bounds defined

by our moment inequalities. Third, our inequalities may yield empty confidence sets when

the researcher incorrectly assumes that certain covariates belong to agents’ information sets,

demonstrating the potential of our estimator to test for the true content of such sets.

4.1 Simulation Set-up

Workers choose between three locations l “ t1, 2, 3u according to the model in Section 2. We

simulate data for 6, 000, 000 workers, each of them of a different type, allowing us to index

22A potential alternative to our estimator is to apply to each element of pθα, θ2, . . . , θLq a procedure that
yields valid CIs for projections of partially identified parameters; e.g., Bugni et al. (2016); Kaido et al. (2019);
Andrews et al. (2023).
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observations by s.23 We set the wage coefficient to α “ 1 and the location-specific amenities

to κ1 “ κ2 “ 0 and κ3 “ 1. While the estimator described in Section 3 is valid for any

stochastic process for wages and any specification of workers’ information sets, we need to

set out these model aspects to generate the model-implied choice for all sampled workers.

We assume the wage of worker s in location l is determined by

wls “ zl1s ` zl2s ` zl3s, (32)

with zlks independent across l, s, and k, and distributed uniformly with mean µlk and support

of length 2σk.
24 We assume worker s observes pzl1s, z

l
2sq for all l. Consequently, for all s and l,

Erwls|Wss “ zl1s`zl2s, and z
l
3s equals the expectational error worker s makes when forecasting

wls. Thus, the larger the value of σ3, the larger the variance of the expectational error.

We assume the researcher observes pyls, w
l
s, z

l
2sq for every worker s and location l. There-

fore, for all s and l, zl1s is a variable used by worker s when forming their expectations about

wls but not observed by the researcher. Thus, the larger the value of σ1, the larger the role

in workers’ expectations of variables that are unobserved to the researcher.

4.2 Simulation Results

Table 1 presents the main simulation results. We consider cases that differ in the value of σ1

and σ3. The former determines the dispersion in zl1s and, thus, the relevance of unobserved (to

the researcher) variables that belong to the worker’s information set. The latter determines

the dispersion in zl3s and, thus, the relevance of payoff-relevant variables that workers do

not observe. Section 4.2.1 discusses our CIs for the wage coefficient θα, displayed in Table 1

in the column labeled First Step and computed using the inequalities introduced in Section

3.2. Section 4.2.2 describes CIs for θ2 and θ3, displayed in the columns labeled Second Step

and computed using the inequalities introduced in Section 3.1. Appendix C.1 describes the

unconditional moment inequalities we use in this simulation exercise.

23We do not aim to illustrate the statistical properties of our inference procedure (see Andrews and Soares,
2010) but to characterize the bounds defined by the inequalities introduced in Section 3. To this end, the
large number of workers is useful, as it limits the impact of simulation noise on our results. We set L ą 2 to
illustrate that our inequalities apply to multinomial settings; larger values of L result in tighter bounds for
θα (as the number of inequalities of the type in equation (27) increases in the number of possible location
pairs) at the expense of more time needed to compute CIs for the larger number of parameters pθ2, . . . , θLq.

24We set µl
1 “ µl

3 “ 0 for all l and pµ1
2, µ

2
2, µ

3
2q “ p0,´0.5,´1q; thus, mean wages decline in order from

l “ 1 to l “ 3. In terms of the dispersion, we set σ2 “ 4 and present results for different values of σ1 and σ3.
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4.2.1 Confidence Intervals for the Wage Coefficient

Cases 1 and 2 share the feature that σ1 “ 0 and, thus, the researcher observes the agent’s full

information set—as zl1s “ 0 for every l, the agent’s information set only includes zl2s, which is

the wage predictor used by the researcher. In these cases, we obtain CIs for θα that are tight

around its true value. This is related to two aspects of our setting. First, we build first-stage

inequalities separately for each pair of locations; thus, as κ1 “ κ2 in our simulation, the

inequality with location indices equal l “ 1 and l1 “ 2 (or vice versa) verifies that ∆κll
1

“ 0.

Furthermore, when building the inequality corresponding to any location pair l and l1, we

match each worker s with a worker r such that Er∆wll
1

s |∆zll
1

2ss is close to Er∆wl
1l
r |∆zll

1

2rs. As

a result, consistent with Corollary 3, the inequalities used to compute the bounds on θα in

Table 1 are close to point identifying this parameter whenever Erwls|Wss “ Erwls|∆z
ll1

2ss for

all l and s. This extra condition is met precisely when σ1 “ 0.25

Cases 3 and 4 share the feature that σ1 ą 0. Thus, the researcher only observes part of the

agent’s information set—the true information set is pzl1s, z
l
2sq for every l, but the researcher

only observes zl2s. By relying on only a subset of the agent’s information set when building

the moment inequalities, the CI for θα becomes wider.

In case 5, the researcher wrongly assumes the agent has perfect information on wages. The

resulting CI is very tight without including the true parameter value; it only includes θα “

0.87. This illustrates a problematic situation for the researcher using moment inequalities, as

such researcher may wrongly conclude that α “ 0.87 and that the inequalities are very tight

around the truth (see Molinari, 2020; Andrews and Kwon, 2024). In our setting, as shown in

Table C.2 in Appendix C.3, the resulting confidence set becomes empty as we increase the

number of instruments used to form our inequalities.

4.2.2 Confidence Intervals for Amenities

Consistently with Corollary 1, the bounding inequalities point identify θ2 and θ3 when the

agent’s information set is fully observed by the researcher; i.e., when σ1 “ 0, as in cases 1 and

2. When σ1 ą 0, as in cases 3 and 4, there are variables the agent knows but the researcher

does not observe and, as a result, the CIs built using the bounding inequalities alone include

parameter values in addition to the true ones. As a comparison of cases 1 and 2, or cases 3

and 4, illustrates, this holds regardless of how large the agent’s expectational errors are.26

25In Table C.3 in Appendix C.4, we present results for other values of pκ1, κ2, κ3q. The CI for θα is tight
if ∆κll

1

“ 0 for at least two locations l and l1. In Table C.1 in Appendix C.2, we show that the CI becomes
wider as the mean difference between Er∆wll1

s |z2ss and Er∆wl1l
r |z2rs for matched workers s and r increases.

26All CIs in Table 1 are computed using the approximation points in equations (14) and (28). In Table C.4
in Appendix C.5, we show the CIs become wider when using other approximation points. How we compute
these points thus does not affect the validity of our inequalities, but it may affect how tight these are.
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Table 1: Simulation Results - Moment Inequality Confidence Intervals

Case σ1 σ3 zls
First Step Second Step

θα Mom. Ineq. θ2 θ3

1 0 0 zl2s [1 , 1.02]
Bounding [0 , 0] [1 , 1]
Odds-based [0 , 0] [1 , 1]

Both [0 , 0] [1 , 1]

2 0 1 zl2s [1 , 1.01]
Bounding [0 , 0] [1 , 1]
Odds-based [-0.33 , 0.32] [0.68 , 1.33]

Both [0 , 0] [1 , 1]

3 1 0 zl2s [0.82 , 1.29]
Bounding [-0.31 , 0.31] [0.70 , 1.30]
Odds-based [0 , 0] [1 , 1.01]

Both [0 , 0] [1 , 1.01]

4 1 1 zl2s [0.82 , 1.31]
Bounding [-0.31 , 0.31] [0.69 , 1.31]
Odds-based [-0.38 , 0.39] [0.68 , 1.45]

Both [-0.31 , 0.31] [0.69 , 1.31]

5 0 1 wls [0.87 , 0.87]
Bounding [-0.05 , -0.01] [0.85 , 0.88]
Odds-based H H

Both H H

The true parameter values are α “ 1, κ2 “ 0, and κ3 “ 1. The column θα contains 95% CIs based on the
estimator described in Section 3.2. The columns θ2 and θ3 contain 95% CIs based on the estimators described
in Section 3.1. The rows labeled Bounding use the inequalities in Section 3.1.1; those labeled Odds-based use
the inequalities in Section 3.1.2; and those labeled Both combine both inequalities. CIs are computed using
the moment selection procedure in Andrews and Soares (2010). See Appendix C.1 for more details.

The length of the CIs on θ2 and θ3 defined by the odds-based inequalities increases in

the importance of the worker’s expectational errors; i.e., increases in σ3, as a comparison of

cases 1 and 2, or cases 3 and 4, illustrates. When workers make no expectational errors (i.e.,

when σ3 “ 0) and the first-step CI for θα equals its true value α, the odds-based inequalities

point identify the amenity parameters θ2 and θ3, as predicted by Corollary 2. When σ3 “ 0

but the CI for θα includes values other than α, the odds-based moment inequalities may still

point identify the amenities (as in cases 1 and 3), but will not do so always.27

Since the bounding inequalities are insensitive to agents’ expectational errors (i.e., in-

sensitive to σ3) and the odds-based inequalities are partially insensitive to agents having

information the researcher does not observe (i.e., partially insensitive to σ1), there are ad-

vantages from combining both types of inequalities in estimation (see Section 3.1.3). Cases

2 and 3 show that, when either σ1 “ 0 or σ3 “ 0, combining bounding and odds-based

inequalities point identifies θ2 and θ3, although, when considered in isolation, neither of these

two inequalities point identifies these parameters in both cases.

27For example, in unreported results, we observe that the confidence intervals for θ2 and θ3 defined by the
odds-based inequalities include values other than the true ones when σ1 “ 2 and σ3 “ 0.
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Case 4 is likely the most empirically relevant: the agent’s information set is partly unob-

served (i.e., σ1 ą 0) and the agent predicts wages with error (i.e., σ3 ą 0). Our estimator

still yields CIs that contain the true parameter values. In this particular case, the odds-

based inequalities are redundant: the combined CIs are larger than those obtained from the

bounding inequalities alone.

Case 5 shows the bounding inequalities may fail to produce empty confidence intervals

when the researcher wrongly assumes workers have complete information. Conversely, the

odds-based inequalities alone, or when used jointly with the bounding inequalities, produce

empty CIs for θ2 and θ3 even when the CI for θα is non-empty.

4.2.3 Maximum Likelihood Estimates

Table 2 reports ML estimates. Given a wage predictor zls, we compute the ML estimator of

pθα, θ2, θ3q assuming that zls is all the information worker s has on wls; that is,

argmax
pθα,θ2,θ3q

#

S
ÿ

s“1

3
ÿ

l“1

1tyls “ 1u ln

˜

exppθl ` θαErwls|z
l
ssq

ř3
l1“1 exppθl1 ` θαEr∆wl1s |zl1s sq

¸+

with θ1 “ 0. (33)

If the researcher’s wage predictor equals zl2s, the ML estimator is consistent if and only if

σ1 “ 0, as in cases 1 and 2, as only then the worker’s wage expectation coincides with the

researcher’s assumed one; i.e., only then Erwls|Wss “ Erwls|z
l
ss for every s and l. Conversely,

if zls “ zl2s and σ1 ą 0, as in cases 3 and 4, the worker’s expectation and the researcher’s

assumed one do not coincide and, as a result, the ML estimator is biased; in particular,

it underestimates the importance of expected wages in the worker’s utility. In case 5, the

researcher assumes workers have perfect information (i.e., zls “ wls and, thus, Erwls|z
l
ss “ wls)

but, contrary to that assumption, workers make forecasting errors (i.e., σ3 ą 0), and the ML

estimator is also biased.

A comparison of the estimates in tables 1 and 2 yields three conclusions. First, when the

ML estimator identifies the true parameter values (as in cases 1 and 2), the CIs defined by

the bounding inequalities either include only the true parameter values (as it is the case for θ2

and θ3) or are very tight around them (as it is the case for θ1). Thus, very little identification

power is lost when using our moment inequality estimator instead of the ML estimator in

those cases in which the latter is consistent. Second, when the ML estimator does not identify

the true parameter values (as in cases 3 to 5), our moment inequality estimator still yields

CIs that contain those values. Moreover, as illustrated by case 3, the CIs produced by our

moment inequality estimator may not include the corresponding ML estimates of some of

the parameters; e.g., for θ2 and θ3.
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Table 2: Simulation Results - Maximum Likelihood Estimator

Case σ1 σ3 zls α κ2 κ3

1 0 0 zl2s 1 0 1

2 0 1 zl2s 1 0 1

3 1 0 zl2s 0.91 0 0.92

4 1 1 zl2s 0.91 0 0.92

5 0 1 wls 0.87 -0.03 0.87

The true parameter values are α “ 1, κ2 “ 0, and κ3 “ 1. Estimates are computed according to equation
(33). Given the large sample size, unreported standard errors are always smaller than 0.001.

5 Empirical Application

In our empirical application, we study internal migration in Brazil. We describe our data in

Section 5.1, discuss our estimation approach and results in Section 5.2, and present tests of

the content of workers’ information sets in Section 5.3. In Section 5.4, we evaluate the effect

of counterfactual changes in information and migration costs.

5.1 Data

Our main data source is the Relação Anual de Informações Sociais (RAIS), an administrative

dataset that includes information on workers and establishments in the Brazilian formal

labor market. We use the establishment’s location (microregion, the closest equivalent to a

commuting zone in the Brazilian administrative map) and sector (industry) to define labor

markets, and we measure workers’ annual wages. By using wages aggregated over the year,

our wage measure includes information on work hours as well as on the number of days during

the year each worker was employed.28

We restrict our sample to workers with similar demographic characteristics. Specifically,

we study workers aged 25-64 with at least a high school degree identified as male and white.

Since RAIS only covers formal employment, workers who are not employed or hold informal

jobs are absent from the dataset. Hence, our conclusions are limited to formal workers, and

we accordingly restrict our sample to individuals with a persistent attachment to the formal

labor market, selecting only those recorded in RAIS for at least seven years during our sample

period, which spans between 2002 and 2011.

To ensure we observe a large number of individuals per market, we focus on 1,000 labor

28RAIS is the only Brazilian panel dataset that provides yearly individual migration choices and wages.
We exploit the panel dimension to compute microregion-sector-year wages net of worker-sector fixed effects.
Cross-sectional household surveys cover the informal sector but provide data at more aggregated geographic
levels (e.g., PNAD), or do not provide past location and wages for the same period (e.g., census).
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markets consisting of all combinations of the 50 microregions (out of 558) and 20 sectors (out

of 51) with the largest total employment reported in RAIS. We obtain the data we use in

estimation by randomly sampling one million individuals per year among those employed in

the 1,000 labor markets of interest. Appendix D provides more details on the RAIS data and

the construction of our sample, and reports summary statistics on migration rates.29

5.2 Estimation of Model Parameters

In Section 5.2.1, we detail the implementation of the moment inequality estimator. In Section

5.2.2, we discuss our estimates and compare them to those obtained using other estimators.

5.2.1 Implementation of Moment Inequalities

We estimate the parameters of the model described in Section 2, with the type s of each

worker defined by their sector. While we assume that the wage coefficient α is common to

all sampled workers, we let the location-specific fixed effects in the vector κ vary by year t

and the worker’s prior location. Thus, we accommodate for unobserved expectations about

migration costs, amenities, and price levels that may vary over time and between workers with

different locations of origin. For simplicity, we refer to these origin-by-destination-by-year

effects as amenities.

Key variables entering our moment inequalities are the differences between any two loca-

tions l and l1 in the location-by-sector-by-time wage shifters wlst. To estimate these shifters,

we use data on observed wages. Specifically, we assume the log wage a worker would have

obtained if employed in a particular sector, region, and year can be expressed as:

wslit “ wlst ` αsi ` βseexp
s
it ` βseepexp

s
itq

2
` βsaageit ` βsaaage

2
it

loooooooooooooooooooooooooooooomoooooooooooooooooooooooooooooon

sector-specific skill

` νslit , (34)

where expsit denotes the number of years of employment of worker i in sector s prior to year

t, ageit denotes the age of worker i at t, and νslit is an unobserved term. Thus, in addition to

the labor market-specific term wlst, we allow wages to depend on a worker-by-sector-by-year

term and a residual that varies by sector, location, worker, and year. We model the worker-

by-sector-by-year term as the sum of an individual-by-sector fixed effect and a function of

29Our moment inequalities are valid if the researcher observes a subset of the markets workers choose from;
see footnote 11. The informal sector and all microregion-sector pairs not included in the analysis may thus
still belong to the worker’s choice set. However, our estimates are based on how workers located in one of
the 50 largest microregions compare two regions among these 50. Thus, when interpreting our estimates,
one should think mostly of urban migrants evaluating other high-density regions. However, nothing prevents
performing a different analysis with rural areas or other demographic groups.
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the worker’s age and sector-specific experience.30

Given equation (34), it holds that, for any locations l and l1, ∆wll
1

it “ ∆wll
1

st ` ∆νll
1

it and,

thus, equation (5) implies that Erνslit |Jits “ 0. We impose no assumption on the information

workers have on shifters wlst, which account for supply and demand factors that impact the

wages of all sampled workers in a labor market, or on their sector-specific skill. In particular,

at the time of choosing their labor market of employment for a year t, we allow workers to have

information on a worker-by-sector specific term that the researcher cannot observe; that is,

on the term αsi . This selection of sectoral labor markets based on unobserved determinants of

wages is important in, e.g., Dix-Carneiro (2014). In contrast, we impose the assumption that

the selection of local labor markets is not driven by worker-by-location terms unobserved to

the researcher. This assumption is consistent with the findings in Kennan and Walker (2011),

who allow for a permanent worker-specific location-match component in wages, but conclude

that the estimated effect of this component is negligible.31

In addition to having a measure of wage shifters wst “ pw1
st, . . . , w

L
stq, which we denote in

the following simply as wages, our inequalities require a wage predictor zlst for each sector,

region, and year. To build these predictors, we implement the following procedure. First, we

fix b P N and calculate the vector of b-quantiles of the distribution of wlst´1 across sectors

and locations. Second, we build as many “bins” as intervals can be constructed using two

consecutive elements of this vector of quantiles. Third, we identify the bin to which each

market belongs. Fourth, and finally, we compute zlst as the average wage in year t´ 1 across

all labor markets that belong to the same bin as wlst´1. Note that, as b increases, the wage

predictors become closer on average to the t ´ 1 wages. Thus, a larger b can be interpreted

as workers having more precise wage information. Specifically, if b “ 2, our wage predictor

assumes workers can determine if lagged wages in a labor market are above or below the

median. If b “ 4, workers can determine the quartile of the t´ 1 wage distribution to which

a labor market belongs. As b Ñ 8, zlst and wlst´1 coincide and, thus, workers know every

market’s lagged wages. We provide additional implementation details in Appendix E.1.

30We measure workers’ sector-specific experience using information from 1993 onward. As all coefficients
in equation (34) are indexed by s, we estimate them by running separate regressions for each of the 20 sectors
in our analysis. These regressions are run on our sample prior to extracting the set of 1 million individuals
per year that we use in our moment inequality estimation. The median R2 across these regressions is 0.83.

31Some location choices may be driven by worker-by-location-by-year shocks; e.g., job offers. We conjec-
ture one can substitute the assumption Erνslit |Jits “ 0 by the assumption Erνslit |Jits “ νslit and still derive
inequalities compatible with our flexible treatment of workers’ information on wl

st. Deriving these inequalities
requires generalizing to a multinomial setting the estimator in Section 8.2 of Dickstein and Morales (2018).
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5.2.2 Estimation Results

First-step estimates: wage coefficient. Panel (a) in Figure 1 reports 95% CIs for α under

different informational assumptions. When we set b “ 2, and thus assume workers can at least

determine whether lagged wages in any given labor market are above or below the median

of the distribution of wages across all labor markets (the “2 bins” case), we obtain a 95%

CI that equals [0.24, 2.44]. The large width of this interval reflects that the dummy variable

indicating whether lagged wages are below or above the median is only loosely correlated

with current wages. When we increase the assumed precision of workers’ information and

impose that workers can at least determine the quartile to which lagged market-specific wages

belong (“4 bins”), we obtain a tighter interval equal to [1.21, 1.83]. Assuming workers can

classify locations according to more detailed quantiles of the wage distribution, or that they

know the actual value of lagged or current wages, yields empty CIs. Thus, we reject the

hypothesis that workers know lagged location-specific wages with a level of precision above

quartiles. Below, we use [1.21, 1.83] as our preferred set estimator of α.

For comparison, we also include 95% CIs computed using a two-step PPML-IV estimator

(see Artuç and McLaren, 2015). As discussed in Appendix E.3, this estimator yields point

estimates of α at the expense of assuming that all workers in the same sector in a period t

(regardless of their location of residence) have the same information set and, consequently,

the same wage expectations. This is a stronger assumption than the one required for our

moment inequalities to bound α, which requires the researcher to specify a (possibly dif-

ferent) variable that belongs to every worker’s information set, but does not restrict the

additional information each worker may have, which may vary flexibly across workers and

labor markets.32 The PPML-IV estimator yields CIs for the wage coefficient that generally

do not overlap with the main CI generated by our moment inequalities: while the PPML-IV

estimator yields CIs between 0.3 and 0.6, the lower bound in our preferred moment inequal-

ity CI is 1.21. Relative to our moment inequality estimator, the PPML-IV estimator thus

underestimates the value workers assign to the expected monetary returns of migration.

Second-step estimates: amenities. Panel (b) in Figure 1 illustrates the moment inequality

estimates of κlnt for t “ 2011 and all origin n and destination l locations in our sample.

Specifically, this panel displays midpoints of the 95% moment inequality CI for each amenity

term κlnt.
33 For comparison, we also display PPML-IV estimates of these amenities. Although

we estimate each parameter κlnt without imposing any restriction on their variability, our

32E.g., the moment inequality CI that uses quartiles of lagged wages as wage predictor is valid if workers,
even within the same sector, location, and period, have different information, as long as all workers can at
least classify labor markets into quartiles on the basis of lagged market wages.

33Appendix E.2 displays the corresponding CIs. We report estimates for the 292 origin-destination pairs
with enough observed migration events to yield both PPML-IV and moment inequality estimates.
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Figure 1: Migration Elasticity and Amenities from Moment Inequalities vs. PPML-IV
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0
.5

1
1

.5
2

2
.5

M
ig

ra
ti

o
n

 E
la

st
ic

it
y

2 bins 4 bins 8 bins 16 bins w
t-1

w
t

Assumed Information Precision

Moment Inequalities PPML IV

(b) Amenities (95% conf. int. midpoint)

2
4

6
8

1
0

A
m

en
it

ie
s 

(U
ti

ls
)

25 50 100 250 500 1000 2500

Distance (km)

Moment Inequalities PPML IV

Panel (a) reports 95% CIs for α. The blue circles delimit the moment inequality CIs. The absence of circles
for certain cases reflects that these CIs are empty. The orange squares mark the PPML-IV CIs. In panel (b),
the blue circles indicate the midpoints of the moment inequality 95% CI for κlnt, for t “ 2011, and the orange
squares indicate the PPML-IV estimates. The fit lines are kernel-weighted local polynomial estimates, with
the shaded area representing 95% CIs.

estimates tend to increase in the distance between locations n and l, consistently with these

parameters accounting for migration costs in our model. The differences in levels between

the PPML-IV and the moment inequality estimates are substantial, the latter being on

average 21% smaller than the former. Moreover, if we convert migration costs into their

log-wage equivalents by dividing them by the estimates of the wage coefficient α obtained

by each estimation method, we find that the moment inequality estimates are 74% smaller.

In sum, estimation procedures commonly used in the migration literature yield estimates

of migration costs or, more generally, of the relative importance of non-wage variables in

migration decisions that are significantly larger than our moment inequality estimates.

5.3 Tests of Information Heterogeneity

As panel (a) in Figure 1 shows, the moment inequality 95% CI for α is nonempty when

we assume workers know the quartile to which lagged wages belong, but is empty when we

assume all workers can classify all markets into eight (or more) bins. However, it is possible

that some workers are more informed than others or that workers have more information

about some markets than others.

We explore here whether observed migration choices are consistent with certain workers

having more precise information about wages in some, but not all, markets. We do so by
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Figure 2: Testing for Heterogeneous Information Sets
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This figure displays patterns of information precision that cannot be rejected in the data. Each panel
studies patterns along a key dimension, including distance, past migration flows, the population of origin and
destination, and the share of households with internet access in the origin and destination. Patterns that
cannot be rejected, yielded by the testing procedure described in the main text, are shown in solid lines. We
test each hypothesis by building an instrument function that defines wage proxies according to the assumed
pattern of information precision. These wage proxies reflect the characteristics of the origin and destination
labor markets.
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checking whether the moment inequality 95% CI for α remains non-empty when we assume

that a group of workers has extra wage information on a group of labor markets. Specifically,

we consider worker groups defined by the population and internet penetration in their prior

location of residence, and groups of labor markets defined by their distance and past migration

flows from the worker’s location, and by their population and internet penetration.34

We implement the same testing procedure for each dimension of heterogeneity. First, we

classify workers (or markets) into six intervals delimited by the 10th, 25th, 50th, 75th, and

90th percentiles of the distribution of workers (or markets) along the corresponding dimen-

sion. We then order these intervals according to the direction along which we hypothesize

information may be more precise. For example, we classify workers into intervals depending

on the internet penetration in the location of residence, and order these from higher to lower

internet penetration. Consistently with our finding in panel (a) in Figure 1, we start from a

baseline information set according to which all workers can classify all markets into quartiles,

and test whether workers in the first interval can further classify markets into eight bins. In

practice, this translates into wage predictors with different levels of precision in different

combinations of workers and markets, affecting the values of the instruments in equation

(31) and thus changing our inequalities. If the resulting 95% CI for α is empty, we reject

that assumption and end the testing. If it is not empty, we increase the level of precision to

16 bins on that first interval and perform a new test. Calling Bj the maximum precision level

tested and not rejected for the jth interval, the next iteration maintains Bj on that interval

and searches for the maximum level of precision in the interval j ` 1, up to precision Bj.

Figure 2 displays our results. Panel (a) shows we cannot reject workers are better informed

about wages in labor markets within the 25th percentile of distance (383 km) of their location

of residence. For those markets, we cannot reject they know t ´ 1 wages with a precision

equivalent to 16 bins. As discussed in Section 5.4.1, migration rates in our model increase

in workers’ information. Thus, the fact that migration rates decrease in distance (Beine

et al., 2016) may be due less than previously thought to migration costs increasing in this

dimension and more to the role information plays in migration choices. In panel (b), we

observe that past migration flows between two locations are positively correlated with the

information residents in one location have about wages in the other. This finding may explain

why workers of a particular origin tend to persistently migrate to the same destinations,

providing an explanation for the impact of enclaves on migration flows (Munshi, 2020).

34The distance between markets equals the geodesic distance between their centroids. Past migration flows
are measured as the total number of workers recorded in RAIS as having migrated between any two locations
in the three years prior to our sample period (1999-2001). The population of each location is computed as
the total employment in RAIS in 1999-2001. The measure of internet penetration in each location equals the
average share of households with broadband internet access between 2007 and 2011. See Appendix D.
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Panels (c) and (d) show that workers living in the five largest regions by population are

better informed, and that all workers have more information about wages in the top quartile

of regions by population. The information premium from living in highly populated areas

adds to the benefits of cities discussed in, for example, Glaeser and Maré (2001) and De la

Roca and Puga (2017). Finally, panels (e) and (f) provide evidence on a mechanism that

may explain the findings in panels (c) and (d): workers living in regions with higher internet

access are better informed, and all workers have better information about regions with high

internet access. This finding is consistent with prior evidence on the informational impact of

broadband internet access (Akerman et al., 2022).

5.4 Counterfactuals

To illustrate the relevance of the estimates described above, we quantify the impact of changes

in workers’ information sets and migration costs on their location choices and expected utility.

We study workers’ individual responses, omitting the impact that changes in information and

costs may have on migration flows through changes in wages and prices.

While we could compute the moment inequality estimates above without imposing any

assumption on the stochastic process of wages, specifying this element of the model is needed

to determine workers’ migration choices. Hence, to compute the results in this section, we

assume wages follow an AR(1) process with sector- and location-specific drifts, and estimate

this process using observed wages in our sample of 50 regions and 20 sectors over 2002-2011.

We find wages are strongly serially correlated, with a persistence estimate of 0.93.

Additionally, while our estimation procedure makes it computationally feasible to obtain

CIs for all model parameters, computing model predictions that account for uncertainty in

all parameter estimates is costly, as it requires building a multidimensional grid that spans

all CIs and evaluating our model at each point in that grid. Instead, we consider all points

in the CI for the wage coefficient α, but calibrate amenities by regressing the midpoint of the

moment inequality CIs (see panel (b) in Figure 1) on a constant and logarithmic distance.

We compute all model implications for a set of one million individuals randomly drawn

from the 2002 empirical distribution of workers across the 50 locations and 20 sectors in our

sample. We simulate these workers’ choices during 2002-2011 for 100 simulation draws of the

wage process. We then report average outcomes across all workers and simulations.

5.4.1 Changes in Information Sets

We evaluate the impact of providing workers with information on market wages in all lo-

cations. Specifically, we assume all workers have an initial level of information on wages
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Figure 3: Effects of Providing Full Information About Wages
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For the information sets indicated in the horizontal axis, panel (a) displays changes in welfare as a result of
giving workers perfect wage information. Panel (b) displays migration rates for different information sets.
The intervals illustrate the range of model predictions consistent with a value of α in the 95% CI r1.21, 1.83s.

common across all destinations, and focus on the impact of receiving perfect wage infor-

mation on workers’ migration probability, measured as the probability a worker changes

locations in two consecutive periods, and welfare. We measure welfare as the average utility

across simulated workers and periods, including the contribution of idiosyncratic tastes for

locations and, importantly, using ex-post wages as the income measure. Hence, workers with

perfect wage information choose locations maximizing their ex post utility, while workers

with incomplete information maximize expected utility, and may thus choose locations that

do not offer the highest utility ex post.

Panel (a) in Figure 3 shows that the gains from improving workers’ information can be

substantial. For workers whose initial information only allows them to determine whether

lagged market wages are above or below the median, welfare gains are between 3.5 and

5.2%, with the highest gains in this interval corresponding to the model that sets the wage

coefficient α at the highest value within its 95% CI. The gains remain significant for workers

who were initially better informed. Even if all workers observed perfectly lagged wages, a

hypothesis we reject in panel (a) in Figure 1, the gains from observing contemporaneous

wages would still range between 1.5 and 2.3%.

Panel (b) in Figure 3 reports migration rates for workers with different information.

Migration rates increase steeply in the precision of the worker’s wage information. They

are below 5% for workers with the coarsest information set we consider, and between 9 and
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Figure 4: Effects of Reducing Migration Costs, by Information Level
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This figure displays counterfactual changes in welfare (panel (a)) and migration rates (panel (b)) from a 10%
reduction in migration costs, depending on workers’ information. The intervals correspond to the range of
model predictions consistent with a value of α in the 95% confidence interval r1.21, 1.83s.

14% when information is complete.35 While it is hardly surprising that better-informed

workers have higher welfare, as better-informed workers choose more often the location that

yields higher ex post utility, it is not obvious that better-informed workers will have higher

migration rates. Workers in our model are rational, and thus, when acquiring additional wage

information, expected wages go up for certain workers and locations and down for others in

such a way that average expectations do not change. The reason why average migration

rates change while average expectations do not is that a worker’s migration probabilities are

a nonlinear function of the worker’s expectations.

5.4.2 Reducing Migration Costs

As shown in Bryan and Morten (2019) and Morten and Oliveira (2024), reducing physical

barriers to geographic mobility is an important policy lever to alleviate spatial misalloca-

tion. However, the benefits of reducing migration costs may depend on whether agents are

well-informed about the economic opportunities in different regions. In this section, we eval-

uate how the effect of reductions in migration costs depends on workers’ wage information.

Specifically, for several information sets, we compute the predictions of our model for a 10%

reduction in our calibrated migration costs.

35When assuming all workers know the quartile to which lagged wages belong, which is the strongest
informational assumption we tested without rejecting it (see Section 5.2.2), our model predicts a migration
rate between 4.2 and 6.9%, which includes the average migration rate of 6.8% observed in the sample; see
Appendix D.2. This illustrates that our estimated model fits the baseline migration elasticity in the data.
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Panel (a) in Figure 4 reveals that the welfare gains from a 10% reduction in migration

costs increase with the precision of workers’ wage expectations. When workers are fully

informed, the welfare gains range from 4.2 to 5.7%, depending on the estimate of α. When

workers can only discern whether lagged wages in a location are above or below their median,

the same reduction in migration costs only yields 1.2 to 1.8% welfare gains.

Panel (b) in Figure 4 illustrates the increases in migration rates from reducing migra-

tion costs at each information level. Migration rates increase significantly for all information

levels, and more so in relative terms for workers with a lower level of information preci-

sion. However, those larger increases in mobility have a higher rate of mistakes when the

information precision is low, leading to the lower welfare gains reported in panel (a).

6 Conclusion

We introduce a new moment inequality method to measure the impact of migration costs

and information frictions on workers’ location decisions. Our method allows workers’ infor-

mation sets to be unobserved by the researcher and to vary flexibly between workers, and

migration costs to vary flexibly across pairs of origin and destination locations. Applying

our method to data on the internal migration of formal workers in Brazil, we obtain four

main results. First, workers have heterogeneous information on location-specific wages. In

particular, gravity forces play an important role in determining the precision of workers’

wage information. Second, accounting for this rich heterogeneity in information sets alters

the mapping from observed location choices and wages to workers’ preferences. More specifi-

cally, our wage preference estimates are three times larger than those obtained using common

estimation procedures, and our migration cost estimates are, on average, 21% lower. Third,

our estimated model predicts that providing wage information to workers results in increases

in both migration rates and welfare. Fourth, relative to a setting in which workers have

perfect information on destination characteristics, policies that reduce migration costs by,

for example, improving transportation infrastructure are less effective in improving worker

welfare when workers are imperfectly informed about destination characteristics.

The two-step moment inequality estimator we introduce may be used more generally

to estimate multinomial discrete choice models when the choice set is large, payoffs are

parameterized with choice-specific fixed effects, and information sets are unobserved to the

researcher and potentially heterogeneous across any two agents. This type of model may be

suitable to study, for example, student decisions over which schools to apply to, or patient

decisions over which hospital to attend.
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A Proofs

Appendix A.1 provides the proof of Theorem 1. Appendix A.2, following Dickstein et al.

(2023), provides the proof of Theorem 2. Appendix A.3 contains the proof of Theorem 3.

A.1 Proof of Theorem 1

Equation (1) implies that, for any worker i of type s and locations l and l1, it holds that

pylis ` yl
1

isqp1tErU l
is ´ U l1

is|Jiss ě 0u ´ ylisq “ 0.

Equations (2) to (5) imply we can rewrite this equality as

pylis ` yl
1

isqp1t∆κll
1

` αEr∆wll
1

s |Wiss ` ∆εll
1

is ě 0u ´ ylisq “ 0. (A.1)

Equation (6) implies the expectation of this equality conditional onWis and a dummy variable

that equals one if worker i of type s chooses either location l or location l1 equals

E

„

expp∆κll
1

` αEr∆wll
1

s |Wissq

1 ` expp∆κll1 ` αEr∆wll1s |Wissq
´ ylis

ˇ

ˇ

ˇ

ˇ

Wis, y
l
is ` yl

1

is “ 1

ȷ

“ 0,

which implies the following moment equality

Er1 ´ ylis ´ ylis expp´∆κll
1

´ αEr∆wll
1

s |Wissq|Wis, y
l
is ` yl

1

is “ 1s “ 0.

Given the conditioning on the event ylis ` yl
1

is “ 1, we can further simplify this equality as

Eryl
1

is ` ylisp´ expp´p∆κll
1

` αEr∆wll
1

s |Wissqqq|Wiss “ 0. (A.2)

As ´ expp´xq is concave in x, a linear approximation to it bounds it from above. The linear

approximation to ´ expp´xq at x “ a is ´ expp´aqp1`a´xq. Thus, given an approximation

point ell
1

is for each worker i of type s, we derive the inequality

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ ∆κll
1

´ αEr∆wll
1

s |Wissq|Wiss ě 0. (A.3)

Consider the alternative moment,

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ ∆κll
1

´ α∆wll
1

s q|Wiss. (A.4)
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Given νll
1

is ” ∆wll
1

s ´Er∆wll
1

s |Jiss and equation (5), we can rewrite this moment as

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ ∆κll
1

´ αpEr∆wll
1

s |Wiss ` νll
1

is q|Wiss.

As Wis Ď Jis, we use the Law of Iterated Expectations (LIE) to write this moment as

ErEryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ ∆κll
1

´ αpEr∆wll
1

s |Wiss ` νll
1

is q|Jiss|Wiss.

As ell
1

is Ď Jis, we can further write this moment as

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ ∆κll
1

´ αpEr∆wll
1

s |Wiss `Erνll
1

is |Jissq|Wiss.

As equation (5) implies Erνll
1

is |Jiss “ 0, the moments in equations (A.3) and (A.4) coincide.

Thus, the moment inequality in equation (A.3) implies the following inequality:

Eryl
1

is ´ ylis expp´ell
1

is qp1 ` ell
1

is ´ ∆κll
1

´ α∆wll
1

s q|Wiss ě 0.

Finally, as zs Ď Wis, the LIE implies that mll1pzs,∆κ
ll1q ě 0, proving Theorem 1. ■

A.2 Proof of Theorem 2

We start from the moment equality in equation (A.2). Consider the alternative moment

Eryl
1

is ` ylisp´ expp´p∆κll
1

` α∆wll
1

s qqq|Wiss. (A.5)

Given νll
1

is ” ∆wll
1

s ´Er∆wll
1

s |Jiss and equation (5), we can rewrite this moment as

Eryl
1

is ` ylisp´ expp´p∆κll
1

` αpEr∆wll
1

s |Wiss ` νll
1

is qqqq|Wiss.

As, by definition, Wis Ď Jis, we can use the LIE to further write this moment as

ErEryl
1

is ` ylisp´ expp´p∆κll
1

` αpEr∆wll
1

s |Wiss ` νll
1

is qqqq|Jiss|Wiss.

As ´ exppxq is concave in x P R, equation (2) and Jensen’s inequality imply the inequality

ErEryl
1

is ` ylisp´ expp´p∆κll
1

` αpEr∆wll
1

s |Wiss ` νll
1

is qqqq|Jiss|Wiss

ď Eryl
1

is ` ylisp´ expp´p∆κll
1

` αEr∆wll
1

s |Wissqqq|Wiss,
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where the left-hand side coincides with the moment in equation (A.5), and the right-hand

side coincides with the moment in equation (A.2). Thus, given equation (A.2), it holds that

Eryl
1

is ` ylisp´ expp´p∆κll
1

` α∆wll
1

s qqq|Wiss ď 0.

After multiplying both sides of this equation by ´1, we obtain

Erylis expp´p∆κll
1

` α∆wll
1

s qq ´ yl
1

is|Wiss ě 0.

Finally, as zs Ď Wis, the LIE implies mll1

o pzs,∆κ
ll1q ě 0, proving Theorem 2. ■

A.3 Proof of Theorem 3

Equation (A.1) implies that, for any worker i of type s, any worker j of type r, and any

locations l and l1, it holds that

yl
1

jrpy
l
is ` yl

1

isqp1t∆κll
1

` αEr∆wll
1

s |Wiss ` ∆εll
1

is ě 0u ´ ylisq “ 0. (A.6)

Equation (6) implies the expectation of this equality conditional on Wis, Wjr, and a dummy

variable that equals one if worker i of type s chooses either location l or location l1 equals

E

„

yl
1

jr

ˆ

expp∆κll
1

` αEr∆wll
1

s |Wissq

1 ` expp∆κll1 ` αEr∆wll1s |Wissq
´ ylis

˙
ˇ

ˇ

ˇ

ˇ

Wis,Wjr, y
l
is ` yl

1

is “ 1

ȷ

“ 0,

which, after some algebra, implies

Eryl
1

jrp1 ´ ylis ´ ylis expp´p∆κll
1

` αEr∆wll
1

s |Wissqqq|Wis,Wjr, y
l
is ` yl

1

is “ 1s “ 0.

Given the conditioning on the event ylis ` yl
1

is “ 1, we can further simplify this equality as

Eryl
1

isy
l1

jr ` ylisy
l1

jrp´ expp´p∆κll
1

` αEr∆wll
1

s |Wissqqq|Wis,Wjrs “ 0.

As ´ expp´xq is concave in x P R, any linear approximation to it bounds it from above.

Thus, given an approximation point ell
1

is for each worker i of type s, we derive the inequality

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´ell
1

is qp´p1 ` ell
1

is q ` ∆κll
1

` αEr∆wll
1

s |Wissq|Wis,Wjrs ě 0. (A.7)

Consider the alternative moment,

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´ell
1

is qp´p1 ` ell
1

is q ` ∆κll
1

` α∆wll
1

s q|Wis,Wjrs. (A.8)
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Given νll
1

is ” ∆wll
1

s ´Er∆wll
1

s |Jiss and equation (5), we can rewrite this moment as

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´ell
1

is qp´p1 ` ell
1

is q ` ∆κll
1

` αpEr∆wll
1

s |Wiss ` νll
1

is qq|Wis,Wjrs.

As, by definition, Wis Ď Jis and Wjr Ď Jjr , we can use the LIE to rewrite this moment as

ErEryl
1

isy
l1

jr ` ylisy
l1

jr expp´ell
1

is qp´p1 ` ell
1

is q ` ∆κll
1

` αpEr∆wll
1

s |Wiss ` νll
1

is qq|Jis,Jjrs|Wis,Wjrs.

As ell
1

is Ď Jis Y Jjr, we can further write this moment as

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´ell
1

is qp´p1 ` ell
1

is q ` ∆κll
1

` αpEr∆wll
1

s |Wiss `Erνll
1

is |Jis,Jjrsqq|Wis,Wjrs.

As equation (5) implies Erνll
1

is |Jis,Jjrs “ 0, the moments in equations (A.7) and (A.8) coin-

cide. Thus, the moment inequality in equation (A.7) implies the following inequality:

Eryl
1

isy
l1

jr ` ylisy
l1

jr expp´ell
1

is qp´p1 ` ell
1

is q ` ∆κll
1

` α∆wll
1

s q|Wis,Wjrs ě 0. (A.9)

This moment inequality is one of the two that we will combine to obtain that in equation

(27). To obtain the second moment inequality, we start from

ylispy
l
jr ` yl

1

jrqp1t∆κl
1l

` αEr∆wl
1l
r |Wjrs ` ∆εl

1l
jr ě 0u ´ yl

1

jrq “ 0, (A.10)

which is analogous to that in equation (A.6). Following the same steps described above to

go from equation (A.6) to equation (A.9), we can derive the following inequality

Erylisy
l
jr ` ylisy

l1

jr expp´el
1l
jrqp´p1 ` el

1l
jrq ` ∆κl

1l
` α∆wl

1l
r q|Wis,Wjrs ě 0. (A.11)

As the moments in equations (A.9) and (A.11) have the same conditioning set, we can add

them. If we further impose that ell
1

is “ el
1l
jr “ ell

1

isjr, we obtain the following moment inequality:

Erylisy
l
jr ` yl

1

isy
l1

jr ` ylisy
l1

jr expp´ell
1

isjrqp´p1 ` ell
1

isjrq ` αp∆wll
1

s ` ∆wl
1l
r qq|Wis,Wjrs ě 0.

As zs Ď Wis and zr Ď Wjr, the LIE implies Mll1pzs, zr, αq ě 0, proving Theorem 3. ■
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B Additional Derivations

Appendix B.1 derives expressions appearing in Section 3.1.1. Appendix B.2 proves Corollary

1. Appendix B.3 derives expressions appearing in Section 3.1.2. Appendix B.4 proves Corol-

lary 2. Appendix B.5 derives expressions appearing in Section 3.2. Appendix B.6 proves

Corollary 3. Appendix B.7 shows how we use inequalities to identify the parameter θα.

B.1 Second-Step Bounding Inequalities: Additional Derivations

Derivation of equation (14). Consider points ell
1

is such that ell
1

is “ hll
1

pzs,∆θll1q for some

function hll
1

p¨q. We compute the function in equation (14) by finding the value of hll
1

pzs,∆θllq

that minimizes the moment in equation (12) at each value of ∆θll1 . Specifically, given zs and

∆θll1 , the first-order condition of the moment in equation (12) with respect to hll
1

pzs,∆θllq is

Erylisph
ll1

pzs,∆θll1q ´ p∆θll1 ` α∆wll
1

s qq|zss “ 0,

or, equivalently, Erhll
1

pzs,∆θll1q ´ p∆θll1 ` α∆wll
1

s q|zs, y
l
is “ 1s “ 0. Solving for hll

1

pzs,∆θll1q,

we obtain the expression in equation (14).

Derivation of equation (15). Equations (12) to (14) imply the following inequality

Eryl
1

is ´ ylis expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqqp1 ´ αp∆wll

1

s ´Er∆wll
1

s |zs, y
l
is “ 1sqq|zss ě 0.

We can simplify this inequality as

Eryl
1

is|zss ě expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqq

ˆ pErylis|zss ´ αErylisp∆w
ll1

s ´Er∆wll
1

s |zs, y
l
is “ 1sq|zssq,

or equivalently,

Eryl
1

is|zss ě expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
is “ 1sqq

1



ˆ pErylis|zss ´ αpEr∆wll
1

s |zs, y
l
is “ 1sErylis|zss ´Er∆wll

1

s |zs, y
l
is “ 1sErylis|zssqq.

Eliminating terms that cancel each other, we obtain the inequality in equation (15); i.e.,

Erylis|zss

Eryl
1

is|zss
expp´αEr∆wll

1

s |zs, y
l
is “ 1sq ď expp∆θll1q.

Derivation of equation (16). Swapping the indices l and l1 in equation (15) we obtain

Eryl
1

is|zss

Erylis|zss
expp´αEr∆wl

1l
s |zs, y

l1

is “ 1sq ď expp∆θl1lq.

Rearranging terms, we obtain the inequality in equation (16).

B.2 Second-Step Bounding Inequalities: Proof of Corollary 1

Equations (12) to (14) imply the following moment inequality:

Erylis expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
s “ 1sqq ´ yl

1

is|zss ě 0. (B.1)

Assuming zs Ď Wis and using the LIE, we can write

ErErylis expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
s “ 1sqq ´ yl

1

is|Wiss|zss ě 0.

Given that zs Ď Wis, we can further rewrite

ErErylis|Wiss expp´p∆θll1 ` αEr∆wll
1

s |zs, y
l
s “ 1sqq ´Eryl

1

is|Wiss|zss ě 0. (B.2)

As ylis is a function of pWis, εisq, equation (5) implies Er∆wll
1

s |Wis, y
l
iss “ Er∆wll

1

s |Wiss. Since

Er∆wll
1

s |zss “ Er∆wll
1

s |Wiss according to Corollary 1, this corollary implies we can rewrite

equation (B.2) as

ErErylis|Wiss expp´p∆θll1 ` αEr∆wll
1

s |zssqq ´Eryl
1

is|Wiss|zss ě 0.

Given equation (6), we can further rewrite

E

”

expp∆κll
1

` αEr∆wll
1

s |Wissq

´

L
ÿ

l2“1

expp∆κl
2l1

` αEr∆wl
2l1

s |Wissq

¯´1

ˆ

expp´p∆θll1 ` αEr∆wll
1

s |zssqq ´Eryl
1

is|Wiss|zs

ı

ě 0.

2



Using a similar expression for the probability of choosing l1 conditional on Wis, we derive

E

”

pexpp∆κll
1

´ ∆θll1q ´ 1q

´

L
ÿ

l2“1

expp∆κl
2l1

` αEr∆wl
2l1

s |Wissq

¯´1ˇ
ˇ

ˇ
zs

ı

ě 0,

where we have used that Er∆wll
1

s |zss “ Er∆wll
1

s |Wiss according to Corollary 1. Then,

pexpp∆κll
1

´ ∆θll1q ´ 1qE

”´

L
ÿ

l2“1

expp∆κl
2l1

` αEr∆wl
2l1

s |Wissq

¯´1ˇ
ˇ

ˇ
zs

ı

ě 0.

The expectation in this inequality is always strictly positive. Thus, the inequality implies

expp∆κll
1

´ ∆θll1q ´ 1 ě 0 ô ∆κll
1

ě ∆θll1 . (B.3)

This inequality holds for any locations l and l1. Swapping the indices l and l1, we obtain:

expp∆κl
1l

´ ∆θl1lq ´ 1 ě 0 ô ∆κll
1

ď ∆θll1 . (B.4)

Equations (B.3) and (B.4) imply ∆κll
1

“ ∆θll1 , proving Corollary 1. ■

B.3 Second-Step Odds-Based Inequalities: Additional Derivations

Derivation of equation (21). Equations (19) and (20) imply the following inequality

Erylis expp´p∆θll1 ` α∆wll
1

s qq|zss ě Eryl
1

is|zss.

We can rewrite this inequality as

Erylis|zss expp´∆θll1qErpexppα∆wll
1

s qq
´1

|zs, y
l
is “ 1s ě Eryl

1

is|zss.

Rearranging terms, we obtain the expression in equation (21); i.e.,

Erylis|zss

Eryl
1

is|zss
Erpexppα∆wll

1

s qq
´1

|zs, y
l
is “ 1s ě expp∆θll1q.

Derivation of equation (22). Swapping the indices l and l1 in equation (21), we obtain

Eryl
1

is|zss

Erylis|zss
Erexpp´α∆wl

1l
s q|zs, y

l1

is “ 1s ě expp∆θl1lq.

Rearranging terms, we immediately obtain the inequality in equation (22).

3



B.4 Second-Step Odds-Based Inequalities: Proof of Corollary 2

Equations (19) and (20) imply the following moment inequality:

Erylis expp´p∆θll1 ` α∆wll
1

s qq ´ yl
1

is|zss ě 0. (B.5)

Assuming zs Ď Wis, the LIE implies we can write this inequality as

ErErylis expp´p∆θll1 ` α∆wll
1

s qq ´ yl
1

is|Wiss|zss ě 0.

Since ∆wll
1

s “ Er∆wll
1

s |Wiss according to Corollary 2, we can rewrite this inequality as

ErErylis|Wiss expp´p∆θll1 ` α∆wll
1

s qq ´Eryl
1

is|Wiss|zss ě 0.

Given the expression for the probability of choosing l conditional on Wis, we rewrite

Erexpp∆κll
1

´ ∆θll1qp

L
ÿ

l2“1

expp∆κl
2l1

` α∆wl
2l1

s qq
´1

´Eryl
1

is|Wiss|zss ě 0.

Using a similar expression for the probability of choosing l1 conditional on Wis, we derive

pexpp∆κll
1

´ ∆θll1q ´ 1qErp

L
ÿ

l2“1

expp∆κl
2l1

` α∆wl
2l1

s qq
´1

|zss ě 0. (B.6)

The expectation in this inequality is always strictly positive. Thus, the inequality implies

expp∆κll
1

´ ∆θll1q ´ 1 ě 0 ô ∆κll
1

ě ∆θll1 . (B.7)

This inequality holds for any locations l and l1. Swapping the indices l and l1, we obtain:

expp∆κl
1l

´ ∆θl1lq ´ 1 ě 0 ô ∆κll
1

ď ∆θll1 . (B.8)

Equations (B.7) and (B.8) imply ∆κll
1

“ ∆θll1 , proving Corollary 2. ■

B.5 First-Step Moment Inequalities: Additional Derivations

Derivation of equation (28). Consider points ell
1

isjr such that ell
1

isjr “ hll
1

pzs, zr, θαq for some

function hll
1

p¨q. We compute the function in equation (28) by finding the value of hll
1

pzs, zr, θαq

that minimizes the moment in equation (26) at each value of θα. Specifically, given zs, zr,

and θα, the first-order condition of the moment in equation (26) with respect to hll
1

pzs, zr, θαq

4



is

Erylisy
l1

jrp2h
ll1

pzs, zr, θαq ´ θαp∆wll
1

s ` ∆wl
1l
r qq|zs, zrs “ 0,

or, equivalently, Er2hll
1

pzs, zr, θαq ´ θαp∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

is1 “ 1s “ 0. Solving for

hll
1

pzs, zr, θαq, we obtain the solution in equation (28).

Derivation of equation (29). Equations (26) to (28) imply the following inequality

Erylisy
l
jr ` yl

1

isy
l1

jr ´ ylisy
l1

jr expp´θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sqˆ

p2 ´ θαpp∆wll
1

s ` ∆wl
1l
r q ´Er∆wll

1

s ` ∆wl
1l
r |zs, zr, y

l
isy

l1

jr “ 1sqq|zs, zrs ě 0,

or, equivalently,

Erylisy
l
jr ` yl

1

isy
l1

jr|zs, zrs ě Erylisy
l1

jr expp´θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sqˆ

p2 ´ θαpp∆wll
1

s ` ∆wl
1l
r q ´Er∆wll

1

s ` ∆wl
1l
r |zs, zr, y

l
isy

l1

jr “ 1sqq|zs, zrs.

Using the LIE, we can rewrite this inequality as

Erylisy
l
jr ` yl

1

isy
l1

jr|zs, zrs ě Erexpp´θαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sqˆ

p2 ´ θαpp∆wll
1

s ` ∆wl
1l
r q ´Er∆wll

1

s ` ∆wl
1l
r |zs, zr, y

l
isy

l1

jr “ 1sqq|zs, zr, y
l
isy

l1

jr “ 1sˆ

Erylisy
l1

jr|zs, zrs ě 0.

Simplifying this expression, and rearranging, we obtain the expression in equation (29).

B.6 First-Step Moment Inequalities: Proof of Corollary 3

Since zs Ď Wis and zr Ď Wjr according to Corollary 3, we rewrite equation (29) as

ErErylisy
l1

jr|Wis,Wjrs|zs, zrs

Er0.5pErylisy
l
jr|Wis,Wjrs `Eryl

1

isy
l1
jr|Wis,Wjrsq|zs, zrs

ď

exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq.

Equations (5) and (6) further imply that we can rewrite this inequality as

ErErylis|WissEryl
1

jr|Wjrs|zs, zrs

Er0.5pErylis|WissEryljr|Wjrs `Eryl
1

is|WissEryl
1

jr|Wjrsq|zs, zrs
ď

exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq. (B.9)
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Given equations (1) to (6), it holds that, for any l1 “ 1, . . . , L and l2 “ 1, . . . , L, we can write

Eryl1is|Wiss “
expp∆κl1l2 ` αEr∆wl1l2s |Wissq

řL
l2“1 expp∆κl2l2 ` αEr∆wl

2l2
s |Wissq

,

and similarly for worker j of type r. We then rewrite the inequality in equation (B.9) as

Erexpp∆κll
1

` αEr∆wll
1

s |Wissq expp∆κl
1l ` αEr∆wl

1l
r |Wjrsq|zs, zrs

Er0.5pexpp∆κll1 ` αEr∆wll1s |Wissq ` expp∆κl1l ` αEr∆wl1lr |Wjrsqq|zs, zrs

ď exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq.

Simplifying this expression, we obtain

ErexppαEr∆wll
1

s |Wissq exppαEr∆wl
1l
r |Wjrsq|zs, zrs

Er0.5pexpp∆κll1 ` αEr∆wll1s |Wissq ` expp∆κl1l ` αEr∆wl1lr |Wjrsqq|zs, zrs

ď exppθαEr0.5p∆wll
1

s ` ∆wl
1l
r q|zs, zr, y

l
isy

l1

jr “ 1sq.

Since Er∆wll
1

s |zss “ Er∆wll
1

s |Wiss “ Er∆wl
1l
r |zrs “ Er∆wl

1l
r |Wjrs “ ∆w̄, for a common

constant ∆w̄ P R, according to Corollary 3, this inequality becomes

exppα∆w̄q exppα∆w̄q

0.5pexpp∆κll1 ` α∆w̄q ` expp∆κl1l ` α∆w̄qq
ď exppθα∆w̄q.

If ∆κll
1

“ 0, then it becomes

exppα∆w̄q exppα∆w̄q

0.5pexppα∆w̄q ` exppα∆w̄qq
ď exppθα∆w̄q ô exppα∆w̄q ď exppθα∆w̄q.

Thus, two inequalities of this type, one with ∆w̄ ą 0 and the other one with ∆w̄ ă 0, will

only be satisfied if θα “ α, proving in this way Corollary 3. ■

B.7 Using Inequalities for Estimation of the Wage Parameter

We describe here how we use the inequalities in Section 3.2 to compute a CI for θα. The

inequality in equation (26) is specific to locations l and l1 and conditions on the vectors zs and

zr. Given that conditional moment inequality, we implement the following steps to derive

k “ 1, . . . , K unconditional moment inequalities. First, we choose scalars ∆zll
1

s Ď zs and

∆zl
1l
r Ď zr that are correlated with ∆wll

1

s and ∆wl
1l
r , and that we use in all K inequalities.

Second, for each k, we choose a subset rzks, zkss of the support of ∆zll
1

s , a subset rzkr, zkrs of

the support of ∆zl
1l
r , and a exponent dk P Z. Given these choices, we build the inequality

6



Erpylisy
l
jr ` yl

1

isy
l1

jr ´ ylisy
l1

jr expp´ell
1

isjrqp2 ` 2ell
1

isjr ´ θαp∆wll
1

s ` ∆wl
1l
r qqqˆ

gkp∆zll
1

s ,∆z
l1l
r qs ě 0, (B.10)

where the term in parenthesis coincides with the moment function in equation (26) and

gkp∆zll
1

s ,∆z
l1l
r q “ 1tzks ă ∆zll

1

s ď zksu1tzkr ă ∆zl
1l
r ď zkrup|∆zll

1

s ||∆zl
1l
r |q

dk .

Effectively, for a pre-specified q P N, we choose limits zks and zks that correspond to con-

secutive elements of the vector of q-quantiles of the distribution of ∆zll
1

s across all types and

location pairs. We do the same for the limits zkr and zkr. Concerning the exponent dk, we

set it to either ´1, 0, or 1. For example, when q “ 2 and dk “ 0 for all k, the number of

inequalities of the type in equation (30) is K “ 4, and the corresponding instruments are

gkp∆zll
1

s ,∆z
l1l
r q “

$

’

’

’

’

&

’

’

’

’

%

1t∆zll
1

s ď medp∆zll
1

s qu1t∆zl
1l
r ď medp∆zl

1l
r qu if k “ 1,

1t∆zll
1

s ď medp∆zll
1

s qu1t∆zl
1l
r ą medp∆zl

1l
r qu if k “ 2,

1t∆zll
1

s ą medp∆zll
1

s qu1t∆zl
1l
r ď medp∆zl

1l
r qu if k “ 3,

1t∆zll
1

s ą medp∆zll
1

s qu1t∆zl
1l
r ą medp∆zl

1l
r qu if k “ 4.

To compute the sample analogue of the moment inequality in equation (B.10), we average

across worker types and workers within each type. If the cardinality L of the worker’s choice

set is large, it may be convenient to further average across all possible location pairs pl, l1q.

C Additional Simulation Results

In Appendix C.1, we describe the inequalities we use to obtain the results in Table 1. In

Appendix C.2, we explore alternative ways of building the first-step inequalities. In Appendix

C.3, we present estimates analogous to those in Table 1, but using a larger set of instruments.

In Appendix C.4, we explore the robustness of the results in Table 1 to different values of

amenities. In Appendix C.5, we compare the estimates in Table 1 to alternative estimates

computed using approximations points other than those in equations (14) and (28).

C.1 Inequalities Used in Computing the CIs in Table 1

First step. Given a predictor zls of the wage level wls in every location l, a pair of locations l

and l1, and a pair of indices k and k1 determining the instruments we use, we compute the

7



CIs for θα displayed in Table 1 using moment inequalities of the type:

S
ÿ

s“1

pylsy
l
rpsq ` yl

1

s y
l1

rpsq ´ ylsy
l1

rpsq expp´ell
1

s q

p2 ` 2ell
1

s ´ θαp∆wll
1

s ` ∆wl
1l
rpsqqqqgkp∆zll

1

s qgk1p∆zl
1l
rpsqq ě 0, (C.1)

where rpsq indexes the type matched with type s. We use this moment inequality for every

pair of locations in the set tpl, l1q; l P t1, 2, 3u, l1 P t1, 2, 3u, l ‰ l1u and every pair of instrument

indices in the set tpk, k1q; k P t1, 2u, k1 P t1, 2uu. Thus, we use 24 inequalities to identify θα.

We now describe in more detail how we choose the type rpsq for each s; how we define the

approximation points ell
1

s for each s; and how we define the instrument gkp¨q for k P t1, 2u.

First, for each s “ 1, . . . , S, we select rpsq randomly among those that satisfy

|Êr∆wll
1

s |∆zll
1

s , y
l
s “ 1s ´ Êr∆wl

1l
rpsq|∆z

l1l
rpsq, y

l1

rpsq “ 1s| ď τ, (C.2)

with τ “ 0.002. In this equation, for example, Êr∆wll
1

s |∆zll
1

s , y
l
s “ 1s is the predicted value

of ∆wll
1

s computed using a linear regression of ∆wll
1

s on ∆zll
1

s estimated on the subset of

observations with yls “ 1. To understand why we impose the restriction in equation (C.2)

when selecting the type rpsq to match with each given type s, one should note that, as S goes

to infinity, the moment inequality in equation (C.1) will be satisfied at θα “ α regardless of

how the type rpsq for every s is chosen. However, Corollary 3 indicates that a condition for

this inequality to point identify θα is that, given wage predictors zls and zlr for the types s

and r combined in the inequality, these wage predictors and types satisfy

Er∆wll
1

s |Wss “ Er∆wll
1

s |zss “ Er∆wl
1l
r |Wrs “ Er∆wl

1l
r |zrs. (C.3)

By selecting the type r according to equation (C.2), we aim to approximate the condition in

equation (C.3) while taking into account that the sets Ws and Wr are generally not observed.

Second, in terms of the approximation point ell
1

s for each type s used in equation (C.1),

we build on equation (28) and impose

ell
1

s “ θα0.5pÊr∆wll
1

s |∆zll
1

s , y
l
s “ 1s ` Êr∆wl

1l
rpsq|∆z

l1l
rpsq, y

l1

rpsq “ 1sq, (C.4)

where, as indicated above, e.g., Êr∆wll
1

s |∆zll
1

s , y
l
s “ 1s is the predicted value of ∆wll

1

s computed

using a linear regression of ∆wll
1

s on ∆zll
1

s estimated on the subset of observations with

yls “ 1. Equation (28) indicates that the optimal approximation point ell
1

s is a function of,

for example, the conditional expectation of ∆wll
1

s given ∆zll
1

s and yls “ 1; in equation (C.4),

8



we compute instead a linear regression. In unreported results, we have instead approximated

nonparametrically the conditional expectation of ∆wll
1

s given ∆zll
1

s and yls “ 1, obtaining very

similar results to those attained when using linear regressions instead.

Third, and finally, in terms of the function gkp¨q for k “ 1, 2, we impose:

gkp∆zll
1

s q “

#

1t∆zll
1

s ď 0u for k “ 1,

1t0 ă ∆zll
1

s u for k “ 2.
(C.5)

This instrument function corresponds to that in Section 3.3 with q “ 2 and d “ 0.

Second step. Given a location l, a predictor zls of w
l
s, an index k determining the instru-

ments we use, and a value θ̌α that belongs to the CI for θα computed in the first step of our

inference procedure, we compute CIs for θl using either the following bounding inequalities

S
ÿ

s“1

py1s ´ yls expp´el1s qp1 ` el1s ´ pθl ` θ̌α∆w
l1
s qqqgkp∆zl1s q ě 0, (C.6a)

S
ÿ

s“1

pyls ´ y1s expp´e1ls qp1 ` e1ls ` pθl ` θ̌α∆w
l1
s qqqgkp∆z1ls q ě 0; (C.6b)

or the following odds-based moment inequalities

S
ÿ

s“1

pyls expp´pθl ` θ̌α∆w
l1
s qq ´ y1sqgkp∆zl1s q ě 0, (C.7a)

S
ÿ

s“1

py1s exppθl ` θ̌α∆w
l1
s q ´ ylsqgkp∆z1ls q ě 0; (C.7b)

or both the bounding and odds-based moment inequalities jointly. The instrument function

gkp¨q in equations (C.6) and (C.7) is defined as in equation (C.5). The points el1s and e1ls

entering the inequalities in equation (C.6) are

el1s “ θl ` θ̌αÊr∆wl1s |∆zl1s , y
l
is “ 1s, (C.8a)

e1ls “ ´θl ` θ̌αÊr∆w1l
s |∆z1ls , y

1
is “ 1s, (C.8b)

where, as indicated above, e.g., Êr∆wll
1

s |∆zll
1

2s, y
l
s “ 1s is the predicted value of ∆wll

1

s computed

using a linear regression of ∆wll
1

s on ∆zll
1

s estimated on the subset of observations with yls “ 1.

Differences across cases. In cases 1 to 4 in Table 1, the wage predictor zls introduced

in equations (C.1) to (C.8) equals the shifter zl2s in equation (32). In case 5, zls equals wls.

In this case, equation (C.2) simplifies to |∆wll
1

s ´ ∆wl
1l
rpsq

| ď τ ; equation (C.4) simplifies to

ell
1

s “ θα0.5p∆wll
1

s `∆wl
1l
rpsq

q; and equation (C.8) simplifies to el1s “ θl` θ̌α∆w
l1
s and e1ls “ ´el1s .
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C.2 First-step Moment Inequalities with Loose Type Matches

In Table C.1, we present CIs for θα computed according to equations (C.1) to (C.5), and

show how these CIs vary as we change the value of τ entering equation (C.2). Table C.1

shows that the 95% CI for θα becomes wider as we increase the value of τ .

Table C.1: Simulation Results - Moment Inequality Confidence Intervals With Loose Matches

Case σ1 σ3 zls τ
1st Step

θα

2 0 1 zl2s 8 [0.73 , 1.32]
2 0 1 zl2s 4 [0.79 , 1.25]
2 0 1 zl2s 2 [0.94 , 1.08]
2 0 1 zl2s 1 [0.98 , 1.03]
2 0 1 zl2s 0.8 [0.99 , 1.03]
2 0 1 zl2s 0.08 [1 , 1.02]
2 0 1 zl2s 0.008 [1 , 1.02]
2 0 1 zl2s 0.002 [1 , 1.01]

The column θα contains 95% CIs computed using the inequalities described in Appendix C.1 and the inference
procedure in Andrews and Soares (2010). The CI with τ “ 0.002 corresponds to that in Table 1.

C.3 Two-step Moment Inequalities with Additional Instruments

In Table C.2, we present CIs analogous to those in Table 1 with the only difference that,

instead of using the instrument function in equation (C.5), we use the following instrument

function

gkp∆zll
1

s q “

$

’

’

’

’

&

’

’

’

’

%

1t∆zll
1

s ď Q25p∆zll
1

s qu for k “ 1,

1tQ25p∆z
ll1

s q ă ∆zll
1

s ď Q50p∆zll
1

s qu for k “ 2,

1tQ50p∆z
ll1

s q ă ∆zll
1

s ď Q75p∆zll
1

s qu for k “ 3,

1tQ75p∆z
ll1

s q ă ∆zll
1

s u for k “ 4,

(C.9)

where Q25p∆z
ll1

s q, Q50p∆z
ll1

s q, and Q75p∆z
ll1

s q respectively denote the percentiles 25, 50, and 75

of the distribution of ∆zll
1

s across all types s and pairs of locations l and l1. As a comparison

of the results in tables 1 and C.2 illustrates, the CIs for θα, θ2, and θ3, become tighter when

we swap the instrument function in equation (C.5) for the more detailed function in equation

(C.9). This change in instrument functions results in an increase in the number of moment

inequalities we use in our estimation.
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Table C.2: Simulation Results - Confidence Intervals With Additional Instruments

Case σ1 σ3 zls
First Step Second Step

θα Mom. Ineq. θ2 θ3

1 0 0 zl2s [1 , 1.02]
Bounding [0 , 0] [1 , 1]
Odds-based [0 , 0] [1 , 1]

Both [0 , 0] [1 , 1]

2 0 1 zl2s [1 , 1.01]
Bounding [0 , 0] [1 , 1]
Odds-based [-0.33 , 0.32] [0.68 , 1.33]

Both [0 , 0] [1 , 1]

3 1 0 zl2s [0.91 , 1.15]
Bounding [-0.31 , 0.31] [0.70 , 1.30]
Odds-based [0 , 0] [1 , 1.01]

Both [0 , 0] [1 , 1.01]

4 1 1 zl2s [0.91 , 1.19]
Bounding [-0.31 , 0.31] [0.70 , 1.30]
Odds-based [-0.32 , 0.32] [0.68 , 1.33]

Both [-0.31 , 0.31] [0.70 , 1.31]

5 0 1 wls H

Bounding H H

Odds-based H H

Both H H

This table contains 95% CIs computed using the inequalities described in Appendix C.1 with the only
exception that the instrument functions gkp¨q for all k “ 1, . . . ,K are not those defined in equation (C.5) but
those defined in equation (C.9).

C.4 Amenity Differences Across All Locations

In Table C.3, we present CIs for θα computed according to equations (C.1) to (C.5), and

show how these CIs vary as we change the value of the amenity parameters pκ1, κ2, κ3q used

to generate the simulated data (see Section 4 for details). Table C.3 shows that the 95% CI

for θα as the minimum value of ∆κll
1

between any two locations l and l1 increases; i.e., as

minlPt1,2,3u,l1‰l∆κ
ll1 increases.

Table C.3: Simulation Results - Confidence Intervals With Amenity Differences

Case σ1 σ3 zls pκ1, κ2, κ3q
1st Step

θα

2 0 1 zl2s p0, 0, 1q [1 , 1.01]
2 0 1 zl2s p0, 0.5, 1q [0.92 , 1.09]
2 0 1 zl2s p0, 0, 2q [1 , 1.02]
2 0 1 zl2s p0, 1, 2q [0.73 , 1.29]
2 0 1 zl2s p0, 0, 3q [1 , 1.02]
2 0 1 zl2s p0, 1.5, 3q [0.55 , 1.49]

The column θα contains 95% CIs computed using the inequalities described in Appendix C.1 and the inference
procedure in Andrews and Soares (2010). The CI with pκ1, κ2, κ3q “ p0, 0, 1q corresponds to that in Table 1.
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C.5 Estimator with Alternative Approximation Points

Panel A in Table C.4 presents CIs computed similarly to those in Table 1. The results in

Panel B incorporate two differences in the way these CIs are computed: (a) instead of using

the approximation points in equation (C.4) in the first-step moment inequalities, we use

ell
1

s “ θα0.5p∆zll
1

s ` ∆zl
1l
rpsqq; (C.10)

and, instead of using the approximation points in equation (C.8) in the second-step bounding

moment inequalities, we use

el1s “ θl ` θ̌α∆z
l1
s , (C.11a)

e1ls “ ´θl ` θ̌α∆z
1l
s . (C.11b)

Table C.4: Simulation Results - Confidence Intervals With Alternative Approximation Points

σ1 σ3 zls Mom. Ineq. θα θ2 θ3

Panel A: Confidence Intervals Using Approximation Points in Eqs. (C.4) and (C.8)

0 0 zl2s Bounding [1 , 1.02] [0 , 0] [1 , 1]

0.25 0 zl2s Bounding [0.98 , 1.04] [-0.02 , 0.02] [0.98 , 1.02]

0.50 0 zl2s Bounding [0.95 , 1.06] [-0.09 , 0.08] [0.92 , 1.08]

0.75 1 zl2s Bounding [0.89 , 1.16] [-0.18 , 0.18] [0.82 , 1.18]

1 0 zl2s Bounding [0.82 , 1.29] [-0.31 , 0.31] [0.70 , 1.30]

Panel B: Confidence Intervals Using Approximation Points in Eqs. (C.10) and (C.11)

0 0 zl2s Bounding [1 , 1.02] [0 , 0] [1 , 1]

0.25 0 zl2s Bounding [0.98 , 1.04] [-0.02 , 0.02] [0.98 , 1.02]

0.50 0 zl2s Bounding [0.94 , 1.09] [-0.09 , 0.08] [0.92 , 1.08]

0.75 1 zl2s Bounding [0.88 , 1.24] [-0.20 , 0.20] [0.81 , 1.21]

1 0 zl2s Bounding [0.81 , 1.50] [-0.41 , 0.42] [0.63 , 1.46]

Panel A contains 95% CIs computed using the inequalities described in Appendix C.1. Panel B contains
95% CIs computed using inequalities analogous to those Appendix C.1, with the only exception that the
approximation points in equations (C.10) and (C.11) are used instead of those in equations (C.4) and (C.8).
As the choice of approximation points only affects the CIs computed using bounding moment inequalities
(i.e., they do not affect the CIs computed using odds-based moment inequalities), we only report those in
the table.
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Relative to the approximation points in equations (C.4) and (C.8), those in equations (C.10)

and (C.11) have the advantage that they do not involve any estimation; in particular, they

do not require computing predicted values from a linear regression. Consequently, they do

not affect the validity of standard moment inequality inference procedures. However, as

a comparison of both panels in Table C.4 illustrates, the use of the approximation points

in equations (C.10) and (C.11) results in CIs that are larger than when the approximations

points in equations (C.4) and (C.8) are used. The difference between both sets of CIs increases

in the value of σ1.

D Data and Summary Statistics

D.1 Data Sources and Sample Construction

The RAIS data. Our main data source is the Relação Anual de Informações Sociais (RAIS),

an administrative dataset maintained by Brazil’s Ministry of Labor. It includes the universe

of formal employment spells in the private and public sectors. Individual workers are iden-

tified by government-issued identification numbers (PIS/PASEP and CPF), allowing us to

track them as they change employers. For all spells observed between 1993 and 2011, we use

information on their start and end dates, average monthly wage, number of work hours stip-

ulated in the contract, 2-digit sector (according to the Classificação Nacional de Atividades

Econômicas, CNAE), and information on the worker’s gender, age, race, and education level.

All information is reported by the employers.

We have no information on workers without formal jobs. These workers may be employed

in the informal sector, self-employed, unemployed, or out of the labor force. Based on the

2010 Census, 51% of the Brazilian labor force was in the formal sector. The implied total

number of formal workers in the Census closely matches the number of workers at RAIS.

Geography and wage definitions. To determine workers’ location, we use the microregion of

the establishment at which the worker is employed. Microregions are groups of municipalities

that span the entirety of the Brazilian territory. They are defined by the Instituto Brasileiro

de Geografia e Estat́ıstica (IBGE). During our sample period, Brazil had 558 microregions.

While RAIS does not contain information on the residence of workers, Dix-Carneiro and

Kovak (2017) use 2000 Census data to show that only 3.4% of individuals lived and worked

in different microregions. Previous research has used microregions as local labor markets

(e.g., Dix-Carneiro, 2014; Dix-Carneiro and Kovak, 2017, 2019; Felix, 2022; Szerman, 2024).

Workers may hold multiple employment spells (jobs) in a year. To obtain a dataset in

which each observation corresponds to a worker and a year, we assign to each worker-year
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pair the microregion and sector corresponding to the job that the worker held for the most

extended period during that year. We compute the wage of a worker in a year by adding the

labor income earned in every job this worker had in the corresponding year. We calculate

the labor income of a worker in each of their jobs by transforming the average monthly wages

reported for that job into a measure of average daily wages and multiplying this one by the

total number of days worked in the job reported in the data. If no start or end dates are

provided, we assume that these are January 1 and December 31, respectively.

Sample restrictions and sampling. We limit our data to workers aged 25 to 64, as these are

the workers most likely to have completed their education and not yet retired. The sample

period is 2002-2011. We use 1993-2001 information to measure each worker’s experience in

each sector and microregion. To limit our data to workers with a sufficiently close labor

relationship with the formal sector, we restrict our sample to workers observed at RAIS for

at least seven years in the sample period. We also restrict our sample to workers with similar

demographic characteristics; specifically, we focus on workers with at least a high school

degree identified as male and white. For computational reasons, we focus on a sample of 10

million worker-year pairs. To ensure we observe a large enough number of individuals per

market, we focus on 1,000 labor markets consisting of all combinations of the 50 microregions

(out of 558) and 20 sectors (out of 51) with the largest total employment reported in RAIS.

We then obtain our sample by randomly sampling 1 million individuals per sample year

among those employed in the 1,000 labor markets of interest.

Additional data sources. We measure distances between microregions by the geodesic dis-

tance between their population centroids. Data on internet connections is from the Agência

Nacional de Telecomunicações (ANATEL), which provides the number of broadband con-

nections by municipality and year from 2007 onwards. We define internet access at the

microregion level as the average share of households with broadband internet access in the

2007-2011 period.

D.2 Summary Statistics: Migration

Consistently with our estimation sample, this section focuses on white male workers with

at least a high school education in the 2002-2011 period. However, statistics are computed

using information on all workers with those demographic characteristics; i.e., not only those

linked to the 50 largest microregions and 20 largest sectors.

Figure D.1a provides yearly migration rates; i.e., the share of workers that change mi-

croregion of employment between years t and t ´ 1. It shows an upward trend over the

sample period, from close to 6% in 2002 to 8% in 2011. Figure D.1a also provides migra-

tion rates conditional on the distance between origin and destination microregions: about a
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Figure D.1: Migration and Sector Changes, by Year

(a) Migration Rates by Year
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(b) Sector and Microregion Changes
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Panel (a) shows migration rates, both aggregate and by distance. Panel (b) shows the share of workers that
changed sectors from the previous year (top line) and the share that both changed sectors and migrated
(bottom line). Data includes all white male workers with at least a high school education.

Figure D.2: Migration Patterns

(a) Histogram: Migration Distance
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(b) Out- vs. In-Migration (sample)
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Panel (a) provides a histogram of distances between origin and destination microregions for observed migra-
tions. In Panel (b), each marker represents one of the 50 microregions in our sample. The y-axis measures
the out-migration rate, while the x-axis measures the in-migration rate. It considers migration with origins
and destinations to all microregions (including outside the 50 largest ones). The dashed line represents the
45-degree line. In both panels, data includes all white male workers with at least a high school education.

third of moves are to microregions within 100 km from the origin, and less than a sixth of

moves involve migration over a distance larger than 1,000 km. Figure D.1b provides a similar

figure for sectoral changes, which are more common. It also provides the share of workers

that change both microregion and sector of employment in a given year, revealing that most

changes in the employment sector are not accompanied by migration.
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Figure D.2a depicts the distribution of distances between origin and destination microre-

gions for those who migrate. Although more than half of moves occur between microregions

within 200 km of distance, a sizable share occurs at larger distances. Figure D.2b provides

a scatter plot depicting the distribution of in-migration and out-migration rates for the 50

microregions in our sample. Each marker represents one of these microregions. In- and out-

migration rates are strongly correlated across microregions, varying close to one-to-one. The

figure also shows that the bulk of microregions have migration rates in the 3 to 12% range.

E Appendix to Empirical Analysis

E.1 Implementation of Moment Inequalities

Approximation points. Computing the moments in equations (12) and (26) requires speci-

fying the approximation points ell
1

is and ell
1

isjr, respectively. Equations (14) and (28) provide

functional forms for these approximation points that, according to corollaries 1 and 3, result

in second-step bounding inequalities and first-step inequalities, respectively, that can point

identify the parameters of interest. Furthermore, as discussed in Appendix sections B.1 and

B.5, the approximation points in equations (14) and (28) yield the tightest identified sets

among all approximation points in a family of functions described in detail in those sections.

The expressions in equations (14) and (28), however, depend on the expectation of specific

wage differences conditional on the wage predictor used to build the corresponding inequality.

Since we ignore the true value of those expectations, we must approximate them in some way.

In our empirical application, we use approximation points that are simple to compute and

that, importantly, do not depend on any regression estimate.36

Specifically, we compute the approximation points entering the bounding moment in-

equalities in equation (12) as

ell
1

is “ ψ0 ` ψ1∆z
ll1

st , (E.1)

where ψ0 and ψ1 are constants the researcher chooses. In practice, we use simultaneously in

estimation several different bounding inequalities of the type in equation (12) computed using

36This stands in contrast with the approach we follow in our simulation setting when computing the CIs
reported in Table 1, where we approximate the conditional expectations entering equations (14) and (28)
using linear regressions; see Appendix C.1 for more details. While the large number of observations we use
in our simulation setting implies that any noise in the linear regression estimates will have a minimal impact
in our estimated CIs, this may not be true in our empirical application. Thus, to simplify the computation
of the moment inequality CIs in our application, we restrict ourselves to using approximation points that are
not functions of prior estimates.
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the approximation points in equation (E.1) with different values of the constants ψ0 and ψ1.

Similarly, we compute the approximation points entering the first-step moment inequalities

in equation (26) as

ell
1

is “ ψ20.5p∆zll
1

st ` ∆zl
1l
rt q, (E.2)

where ψ2 is a constant. In practice, we also use simultaneously in estimation several different

first-step moment inequalities of the type in equation (26) computed using the approximation

points in equation (E.2) with different values of the constant ψ2.
37

Aggregating across pairs of locations in the first-step moment inequalities. The moment

inequality in equation (26) holds for any two locations l and l1. As we consider 50 possible

locations in our empirical application, there is a very large number of potential location

pairs. Instead of using a correspondingly large number of different moment inequalities of

the type in equation (26), we use a smaller number of inequalities that aggregate across

location pairs. Our choice of which location pairs to combine is guided by Corollary 3. This

corollary indicates that a requisite for the inequality in equation (26) to point identify the

wage parameter θα is that the locations l and l1 being compared offer the same amenity

level in the population of reference; that is, using the notation in our empirical application,

κlnt ´ κl
1

nt “ 0. Enforcing this condition is infeasible as these amenity levels are continuous

variables that are only estimated later in our estimation procedure. However, as κlnt accounts

for migration costs in our setting, it is reasonable to expect it will vary with the distance

between locations n and l. Thus, we hypothesize that locations l and l1 that are at a similar

distance to an origin n are more likely to have similar amenity levels from the perspective

of workers located in n and, when combined in the context of the inequality in equation

(26), should yield smaller identified sets. Consequently, we form the sample analogue of

the moment in equation (26) aggregating only across location pairs l and l1 for which the

difference between the distance from n to l and the distance from n to l1 is in the lower tercile

of all pairwise differences in distance to n. Given such location pairs, we form the moment

function in equation (26) by further aggregating across all sector pairs s and r, and across

worker pairs within those sectors.

Instrument vectors. Given a wage predictor zlst for every l, s, and t, we construct mo-

37The formulas for the approximation points in equations (E.1) and (E.2) are similar to those used to
compute the simulation results discussed in Appendix C.5. However, the formulas in equations (E.1) and
(E.2) differ from those in equations (C.10) and (C.11) in that they do not depend on the structural parameters
to estimate, but on constants chosen by the researcher. The fact that the researcher can explore the identifying
power of a large set of possible values for the constants pψ0, ψ1, ψ2q has the advantage of generating tighter
CIs, and the computational disadvantage that the number of moment inequalities used in estimation increases
in the set of values of pψ0, ψ1, ψ2q the researcher uses.
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ment inequalities using instruments of the type in equation (31) for every dk P t´1, 1u and

rzk, zks P tr´8, Q25p∆zll
1

st qs, rQ25p∆zll
1

st q, Q50p∆zll
1

st qs, rQ50p∆z
ll1

st q, Q75p∆z
ll1

st qs, rQ75p∆z
ll1

st q,8su,

where Qqp∆z
ll1

st q denotes the percentile q of the distribution of ∆zll
1

st . Thus, we use 8 different

instrument vectors.

E.2 Additional Result

Figure E.1 provide the CIs of estimated amenities κlnt, described in Section 5.2.2.

Figure E.1: Amenities from Moment Inequalities with Confidence Intervals
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Each point shows the midpoint of the 95% confidence interval for a given bilateral migration cost κlnt in the
year 2011, with the associated 95% confidence interval.

E.3 PPML-IV Estimator

We describe here our implementation of the estimator in Artuç and McLaren (2015). To

rationalize the implementation of this estimator in our setting, we must assume all workers

employed in the same sector s have the same information set in any given period t, regardless

of their location of residence. Thus, Jist “ Ji1st for any sector s, period t, and any two workers

i and i1 employed in s at t. Given this assumption, we can write the model-implied number

of sector s workers that migrate between locations n and l at t as:

M l
nst “

exp
`

αErwlst|Jsts ´ κlnt
˘

ř

k exp
`

αErwkst|Jsts ´ κknt
˘Lnst´1
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“ exp
`

αErwlst|Jsts ´ κlnt ` Γnst
˘

“ exp
`

αpwlst ´ νlstq ´ κlnt ` Γnst
˘

“ exp
`

Λlst ` Ψl
nt ` Γnst

˘

, (E.3)

where Lnst´1 is the total number of workers in location n and sector s at period t ´ 1;

νlst ” wlst ´ Erwlst|Jsts is these workers’ expectational error when predicting wages in sector

s, period t, and location l; and

Λlst ” αpwlst ´ νlstq, Γnst ” ´ ln
´

ÿ

k

exp
`

αErwkst|Jsts ´ κknt
˘

¯

` lnLnst, Ψl
nt ” ´κlnt.

Using information on tM l
nstu

L,L
n“1,l“1 for a period t, sector s, and L origin and destination

locations, the procedure in Artuç and McLaren (2015) recovers estimates of α and tκlntu
L,L
n“1,l“1

in three steps. First, it computes PPML estimates of tΛlstu
L
l“1, tΓnstu

L
n“1 and tΨl

ntu
L,L
n“1,l“1

using the expression in the last line in equation (E.3). Second, under the assumption that a

variable zlst correlated with wlst belongs to the information set Jst, it computes an IV estimate

of α by regressing Λ̂lst on w
l
st using z

l
st as an instrument, with Λ̂lst the first-step estimate of

Λlst. Third, it recovers κ̂
l
nt “ ´Ψ̂l

nt for every origin n and destination l.

F Model with Endogenous Worker Types - Sectors

We model workers’ choice of market to supply labor. Each labor market is defined by a sector

s “ 1, . . . , S and a location l “ 1, . . . , L, and we index each market by the combination of

indices sl. Defining a variable ysli that equals one if worker i chooses market sl (and zero

otherwise), we assume

ysli ” 1tl “ argmax
l1“1,...,L
s1“1,...,S

ErU s1l1

i |Jisu for any l “ 1, . . . , L and s “ 1, . . . , S.

Consistently with equation (2), we assume worker expectations are rational. However, instead

of equation (3), we assume the utility of choosing market sl for a worker i is:

U sl
i “ κl ` τ s ` αwsli ` εsli ,

where the new term τ s is a sector-specific unobserved term that accounts for sector-specific

amenities as well as for sector-specific switching costs.

The assumption in equation (4) applies directly to the model with endogenous worker

types. The assumption in equation (5) extends naturally to the model considered here.
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Specifically, for any sectors s and r, locations l and l1, and worker indices i and j, it holds:

Er∆wsll
1

i |Ji,Jjs “ Er∆wsll
1

i |Jis “ Er∆wsll
1

i |Wis “ Er∆wsll
1

|Wis,

where ∆wsll
1

i “ wsli ´ wsl
1

i and ∆wsll
1

“ wsl ´ wsl
1

, with wsl a market-level wage shifter.

Finally, instead of equation (6), we assume that, for any workers i and j, it holds that

Fεpεi, εj|Wi,Wjq “ FεpεiqFεpεjq

“ exp

ˆ

´

S
ÿ

s“1

´

L
ÿ

l“1

expp´εsli q

¯ψ

´

S
ÿ

s“1

´

L
ÿ

l“1

expp´εslj q

¯ψ
˙

,

where ψ measures the extent to which the type I extreme value idiosyncratic shocks are

correlated across locations within a sector. Thus, the model with endogenous sectors is a

nested logit model, with each nest defined by a sector s “ 1, . . . , S.

G Extension: Dynamic Model of Location Choice

We describe here how to extend our estimation method to settings with forward-looking

agents facing one-time migration costs. In Appendix G.1, we describe our dynamic migration

model. In Appendix G.2, we show how to adapt the procedure in Section 3 to the estimation

of the parameters of the dynamic model. Appendix G.3 provides additional details.

G.1 Theoretical Framework

Defining a dummy variable ylist that equals one if worker i of type s chooses l at t, we assume

ylist ” 1tl “ argmax
l1“1,...,L

ErV l1ist|Jistsu for l “ 1, . . . , L, (G.1)

with V list the choice-specific value function and Er¨s defined as in equation (2). We impose:

V list “ vlist ` εlist, (G.2a)

vlist “ βxlnt ` λlt ` αwlist ` δVpltq
ist`1, (G.2b)

where n indexes the location of worker i of type s at period t ´ 1, and

Vpltq
ist`1 ” max

l1“1,...,L
ErVpltql1

ist`1|J
pltq
ist`1s. (G.3)
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Equation (G.2a) splits the choice-specific value function into the idiosyncratic component εlist

and a variable vlist that equation (G.2b) defines as the sum of four terms. First, the migration

costs between locations n and l, modeled as a function of observed covariates xlnt and a vector

of parameters β. Second, a location- and period-specific term λlt, which captures a location’s

amenities and (log) price index. Third, the wage component αwlist. Fourth, the product

of the discount factor δ and a variable Vpltq
ist`1 that, according to equation (G.3), equals the

worker’s period-t ` 1 value function conditional on choosing alternative l at period t.38

Defining λt “ pλ1t , . . . , λ
L
t q and εist “ pε1ist, . . . , ε

L
istq, we assume that

pεist, λtq Ď Jist. (G.4)

Thus, when making choices at t, workers know the vectors of contemporaneous idiosyncratic

preferences εist and amenities λt. Equation (G.4) does not restrict the information workers

have about wages wist1 “ pw1
ist1 , . . . , w

L
ist1q for any t1 ě t or amenities λt1 for any t

1 ą t.

While we do not specify the full content of workers’ information sets, we limit the processes

that determine them and assume that, for any t1 ą t,

Jist1 KK yist|Jist. (G.5)

Thus, conditional on the worker’s information set at a period t, the worker’s information set

in subsequent periods does not depend on the worker’s choice at t. Our framework thus does

not allow for endogenous learning, understood as the process through which the worker’s

information set at t may depend on the history of locations visited by the worker.

Defining ∆vll
1

ist ” vlist ´ vl
1

ist, we impose that for any period t, locations l and l1, types s

and r, and workers i and j that share a common prior location n,

Er∆vll
1

ist|Jist,Jjrts “ Er∆vll
1

ist|Jists “ Er∆vll
1

ist|Wists. (G.6)

The first equality imposes that every worker has at least as much information as any other

worker of a different type r with whom it shares prior location n about differences in their

own location-specific value functions. The second equality imposes that, once we condition

on all other elements of the information set of worker i of type s at period t, the idiosyncratic

preferences in εist do not contain any information on ∆vll
1

ist for any two locations l and l1.39

38A comparison of equations (3) and (G.2) shows that, at the expense of assuming δ “ 0, the static
model allows for a more flexible specification of migration costs, which may vary freely between locations
and periods.

39The variable ∆vll
1

ist depends on the worker’s future choices, which will depend on εist1 for t1 ą t; thus,
equation (G.6) will generally not hold unless εist is independent over time.
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As in the static model, we restrict the information workers have on location-specific wages.

For workers i and j of types s and r, respectively, and locations l and l1, we impose that

Er∆wll
1

ist|Wist,Wjrts “ Er∆wll
1

st |Wists. (G.7)

Thus, the worker’s period-t expectation of the contemporaneous wage difference between two

locations l and l1 equals the expectation of terms that do not vary across workers of the same

type s. We do not restrict the information workers have about the difference in type- and

location-specific wages ∆wll
1

st1 between any two locations l and l1 and in any period t1.

Finally, as in equation (6), we assume that, for workers i and j of types s and r,

Fεpεist, εjrt|Wist,Wjrtq “ FεpεistqFεpεjrtq “ exp

ˆ

´

L
ÿ

l“1

pexpp´εlistq ` expp´εljrtqq

˙

. (G.8)

That is, the vectors εist and εjrt are independent of pWist,Wjrtq and of each other, and each

of their elements is iid according to a type I extreme value distribution.

The elements of λt are identified up to a common shifter. We normalize λ1t “ 0 for all t;

the model parameters are thus pλ2t , . . . , λ
L
t q for all t, α, and β.

G.2 Estimation With Moment Inequalities

We provide a two-step estimator. In the first step, we compute a confidence set for pα, βq

using inequalities that difference out the amenity term λlt for all l and t. In the second step,

for each l “ 2, . . . , L and sample period t, we derive inequalities that depend only on α,

β, and λlt, and combine these inequalities with the confidence set for pα, βq to compute a

confidence interval for λlt. We denote by pθα, θβq the parameter vector with true value pα, βq,

and by Θpα,βq the set of possible values of pθα, θβq. We denote by θlt the parameter with

true value λlt and by Θl
t the set of possible values of θlt. In Appendix G.2.1, we discuss the

estimation of tθltul,t. In Appendix G.2.2, we describe the estimation of pθα, θβq.

G.2.1 Second-Step: Estimating Location-Specific Amenities

Denote by ∆θll
1

t ” θlt ´ θl
1

t the parameter with true value ∆λll
1

t ” λlt ´ λl
1

t , and by Θll1

t the set

of possible values of ∆θll
1

t . Then, for any pair of locations l and l1, zst, and scalar random

variable ell
1

ist, we define the moment

m̃
ll1

pzst,∆θ
ll1

t q ” Eryl
1

ist ´ ylist expp´ell
1

istqp1 ` ell
1

ist ´ ∆ṽll
1

istp∆θ
ll1

t qq|zsts, (G.9)
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with

∆ṽll
1

istp∆θ
ll1

t q “ β∆xll
1

nt ` ∆θll
1

t ` α∆wll
1

ist ` δβ
L

ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1q. (G.10)

Theorem 4 establishes a property of this moment when evaluated at ∆θll
1

t “ ∆λll
1

t .

Theorem 4 Assume equations (G.1) to (G.8) hold. Then, m̃ll1pzs,∆κ
ll1q ě 0 if ell

1

ist Ď Jist
and zst Ď Wist.

We prove this theorem in Appendix G.3.1. Theorem 4 shows that, given knowledge of pα, βq,

one may bound the amenity difference ∆λll
1

t for any sample period t and locations l and l1,

and provide an expression for the optimal scalar ell
1

ist in Appendix G.3.2

To obtain the inequality m̃ll1pzst,∆λ
ll1

t q ě 0, we first follow steps analogous to those taken

to derive the static bounding inequality in equation (13).40 In this way, we obtain

Eryl
1

ist ´ ylist expp´ell
1

istqp1 ` ell
1

ist ´ pvlist ´ vl
1

istqq|zsts ě 0. (G.11)

This inequality cannot be used for estimation as the value function difference vlist ´vl
1

ist is not

a function only of observed covariates and parameters. We follow Morales et al. (2019) and

implement a discrete analogue of Euler’s perturbation method to derive an inequality that

can be used for estimation. Specifically, we substitute vl
1

ist in equation (G.11) by a function

ṽl
1

ist, where v
l1

ist and ṽ
l1

ist differ in that the latter conditions on the choices that, from period

t ` 1 onwards, would be optimal for worker i of type s if they had chosen alternative l at t.

As our dynamic model exhibits one-period dependence, vlist ´ ṽl
1

ist is a function exclusively of

the difference in static utilities at period t and the discounted difference in static utilities at

t ` 1 that are due to whether the worker chooses alternatives l or l1 at t. Specifically,

vlist ´ ṽl
1

ist “ ulist ´ ul
1

ist ` δβ
L

ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1q, (G.12)

where y
pltql2

ist`1 is the optimal choice at t`1 of worker i of type s if they were to choose alternative

l at t. The expression in equation (G.12) is a function of observed covariates and parameters.

Moreover, vl
1

ist ě ṽl
1

ist for every worker, period, and choices l and l1. Thus, the sign of the

moment inequality in equation (G.11) is preserved if ṽl
1

ist takes the place of vl
1

ist.

40While it may be feasible to use the odds-based moment inequalities introduced in Section 3.1.2 in the
context of our dynamic model, we have not found a way of doing so.
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G.2.2 First-Step: Estimating Migration Costs and Wage Coefficient

For any period t, locations l and l1, worker i of type s and worker j of type r, vectors zst and

zrt, and scalar random variable ell
1

ijsrt, we define the moment

M̃
ll1

pzst, zrt, θα, θβq ” (G.13)

Erylisty
l
jrt ` yl

1

isty
l1

jrt ´ ylisty
l1

jrt expp´ell
1

ijsrtqp2 ` 2ell
1

ijsrt ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|zs, zrs.

Theorem 5 establishes a property of this moment when evaluated at θα “ α and θβ “ β.

Theorem 5 Assume equations (G.1) to (G.8) hold. Then, Mll1pzs, zr, α, βq ě 0 if ell
1

isjrt Ď

Jist Y Jjrt, zst Ď Wist, and zrt Ď Wjrt.

We prove Theorem 5 in Appendix G.3.3. Theorem 5 states that, given equations (G.1) to

(G.8), the assumption that zst belongs to the information set of worker i of type s at period t,

and the assumption that zrt belongs to the information set of worker j of type r at period t,

the moment in equation (G.13) is positive when evaluated at pθα, θβq “ pα, βq. Furthermore,

this is true regardless of the period t, the two locations l and l1 we compare, the workers is

and jr we consider, the vectors zst and zrt on which we condition, and scalar random variables

ell
1

ijsrt we use to form the moment. We thus may compute the set of values of pθα, θβq that

satisfy

M̃
ll1

pzst, zrt, θα, θβq ě 0, (G.14)

and, if equations (G.1) to (G.8) hold, zst Ď Jist, zrt Ď Jjrt, and ell
1

isjrt Ď Jist Y Jjrt, pα, βq

will belong to this set.

G.3 Proofs and Additional Details

G.3.1 Second-Step Bounding Inequalities: Proof of Theorem 4

Equation (G.1) implies that, for any worker i of type s, period t, and locations l and l1,

pylist ` yl
1

istqp1tErV list ´ V l1ist|Jists ě 0u ´ ylistq “ 0.

Equations (G.2a), (G.4), and (G.6) imply we can rewrite this equality as

pylist ` yl
1

istqp1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylistq “ 0, (G.15)
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where ∆vll
1

ist “ vlist ´ vl
1

ist and ∆εll
1

ist “ εlist ´ εl
1

ist. This equality holds for any worker i of

any type s, any period t, and any two locations l and l1. Thus, computing a conditional

expectation of both sides of this equality, we obtain

Er1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylist|Wist, y
l
ist ` yl

1

ist “ 1s “ 0.

Following steps analogous to those described in Appendix A.1, we can derive the following

moment inequality

Eryl
1

ist ` ylist expp´ell
1

istqp´p1 ` ell
1

istq ` ∆vll
1

istq|zsts ě 0. (G.16)

This moment differs from that in equation (12) only in that the difference in the static utility

between alternatives l and l1 entering equation (12) (i.e., ∆θll1 ` α∆wll
1

s ) is substituted by

the difference in the corresponding choice-specific value functions (i.e., ∆vll
1

ist).

The inequality in equation (G.16) is not immediately useful for the identification of the

parameters of the dynamic model described in Appendix G.1. The term ∆vll
1

ist depends on the

optimal choices of worker i of type s in every period t1 ą t both conditional on choosing l at

period t (which matters for the value of vlist) and conditional on choosing l1 at period t (which

matters for the value of vl
1

ist). To derive a moment inequality that can be used to partially

identify the parameters of the model described in Appendix G.1, we follow the approach in

Morales et al. (2019). Specifically, we substitute ∆vll
1

ist by the variable

∆ṽll
1

ist ” vlist ´ ṽl
1

ist, (G.17)

where ṽl
1

ist is the discounted sum of static utilities from period t onwards (that is, in every

period t1 ě t) if worker i of type s chooses location l1 at period t but follows in every

subsequent period t1 ą t the path of choices that would be optimal if they had instead chosen

location l at t. To define vlist, v
l1

ist, and ṽ
l1

ist, denote by

y
pltq
ist1 “ py

pltq1
ist1 , . . . , y

pltqL
ist1 q (G.18)

the choices of worker i of type s at t1 if they were to choose alternative l at t. Then,

vlist “ κlnt ` αwlst ` δ
L

ÿ

l2“1

y
pltql2

ist`1pκ
l2

lt`1 ` αwl
2

st`1 ` εl
2

ist`1q (G.19a)

`
ÿ

t1ąt`1

δt
1´t

L
ÿ

n1“1

L
ÿ

l2“1

y
pltqn1

ist1´1y
pltql2

ist1 pκl
2

n1t1 ` αwl
2

st1 ` εl
2

ist1q,
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vl
1

ist “ κl
1

nt ` αwl
1

st ` δ
L

ÿ

l2“1

y
pl1tql2

ist`1 pκl
2

l1t`1 ` αwl
2

st`1 ` εl
2

ist`1q (G.19b)

`
ÿ

t1ąt`1

δt
1´t

L
ÿ

n1“1

L
ÿ

l2“1

y
pl1tqn1

ist1´1y
pl1tql2

ist1 pκl
2

n1t1 ` αwl
2

st1 ` εl
2

ist1q,

ṽl
1

ist “ κl
1

nt ` αwl
1

st ` δ
L

ÿ

l2“1

y
pltql2

ist`1pκ
l2

l1t`1 ` αwl
2

st`1 ` εl
2

ist`1q (G.19c)

`
ÿ

t1ąt`1

δt
1´t

L
ÿ

n1“1

L
ÿ

l2“1

y
pltqn1

ist1´1y
pltql2

ist1 pκl
2

n1t1 ` αwl
2

st1 ` εl
2

ist1q.

Equations (G.1) and (G.5) imply that Ervl
1

ist|Wists ě Erṽl
1

ist|Wists, and, consequently,

Er∆vll
1

ist|Wists ě Er∆ṽll
1

ist|Wists. (G.20)

Equations (G.16) and (G.20) imply the following moment inequality

Eryl
1

ist ` ylist expp´hll
1

istpzst,∆λ
ll1

t qqp´p1 ` hll
1

istpzst,∆λ
ll1

t qq ` ∆ṽll
1

istq|zsts ě 0. (G.21)

Comparing the expressions for vlist and ṽ
l1

ist in equations (G.19a) and (G.19c), we can write

∆ṽll
1

ist “ vlist ´ ṽl
1

ist “ pκlnt ´ κl
1

ntq ` αpwlst ´ wl
1

stq ` δ
L

ÿ

l2“1

y
pltql2

ist`1pκ
l2

lt`1 ´ κl
2

l1t`1q

“ βpxlnt ´ xl
1

ntq ` pλlt ´ λl
1

t q ` αpwlst ´ wl
1

stq ` δβ
L

ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1q. (G.22)

Combining equations (G.22) and (G.21), we obtain an inequality whose moment equals that

in equation (G.9) for ∆θll1 “ ∆λll
1

. Equations (G.21) and (G.22) thus imply Theorem 4. ■

G.3.2 Second-Step Bounding Inequalities: Additional Derivations

Derivation of optimal approximation points. Given zst P Zst,compute ell
1

ist “ hll
1

istpzst,∆θllq

that minimizes the moment in equation (G.9) at each value of ∆θll1 . Given zst and ∆θll1 , the

first-order condition of the moment in equation (G.9) with respect to hll
1

istpzst,∆θllq is

Erylistph
ll1

istpzst,∆θll1q ´ ∆ṽll
1

istq|zsts “ 0;

equivalently, Erhll
1

istpzst,∆θll1q ´ ∆ṽll
1

ist|zst, y
l
ist “ 1s “ 0. Solving for hll

1

istpzst,∆θll1q, we obtain:

hll
1

istpzst,∆θll1q “ Er∆ṽll
1

ist|zst, y
l
ist “ 1s, (G.23)
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G.3.3 First-Step Moment Inequalities: Proof of Theorem 5

For choices l and l1, worker i of type s, worker j of type r, and t, equation (G.15) implies

yl
1

jrtpy
l
ist ` yl

1

istqp1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylistq “ 0. (G.24)

Taking the expectation of both sides of this equality conditional on Wist, Wjrt, and a dummy

variable that equals one if worker i of type s chooses either l or l1 at t, we obtain

Eryl
1

jrtpy
l
ist ` yl

1

istqp1tEr∆vll
1

ist|Wists ` ∆εll
1

ist ě 0u ´ ylistq|Wist,Wjrt, y
l
ist ` yl

1

ist “ 1s “ 0.

Given equations (G.1) and (G.8), we can rewrite this moment equality as

E

„

yl
1

jrt

ˆ

exppEr∆vll
1

ist|Wistsq

1 ` exppEr∆vll
1

ist|Wistsq
´ ylist

˙
ˇ

ˇ

ˇ

ˇ

Wist,Wjrt, y
l
ist ` yl

1

ist “ 1

ȷ

“ 0,

or, equivalently, after multiplying by 1 ` expp´Er∆vll
1

ist|Wistsq, and rearranging,

Eryl
1

jrtp1 ´ ylist ´ ylist expp´Er∆vll
1

ist|Wistsqq|Wist,Wjrt, y
l
ist ` yl

1

ist “ 1s “ 0.

Given that this expectation conditions on the event ylist ` yl
1

ist “ 1, we can further rewrite

Eryl
1

isty
l1

jrt ` ylisty
l1

jrtp´ expp´Er∆vll
1

ist|Wistsqq|Wist,Wjrts “ 0.

As ´ expp´xq is concave, we derive the following inequality given any scalar ell
1

ijsrt,

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq `Er∆vll
1

ist|Wistsq|Wist,Wjrts ě 0. (G.25)

Let’s consider the alternative moment

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq ` ∆vll
1

istq|Wist,Wjrts. (G.26)

Equation (G.6) implies νll
1

ist “ ∆wll
1

ist ´Er∆wll
1

st |Wist,Wjrts and, thus, we can conclude that

Erνll
1

ist|Wist,Wjrts “ 0. (G.27)

As Wist Ď Jist and Wjrt Ď Jjrt, the LIE allows to write the moment in equation (G.26) as

ErEryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq `Er∆vll
1

ist|Wists ` νll
1

istqq|Jist,Jjrts|Wist,Wjrts.
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Equation (G.1) implies Erylisty
l1

jrt|Jist,Jjrts “ ylisty
l1

jrt. Consequently, if zst Ď Wist and zrt Ď

Wjrt, then zst Ď Jist and zr Ď Jjrt, and we can rewrite the moment in equation (G.26) as

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq `ErEr∆vll
1

ist|Wists ` νll
1

ist|Wist,Wjrtsq|Wist,Wjrts,

and equation (G.27) implies we can rewrite the moment in equation (G.26) as

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq `Er∆vll
1

ist|Wistsq|Wist,Wjrts.

This moment is the same in equation (G.25), hence, we have shown:

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq ` ∆vll
1

istq|Wist,Wjrts ě 0. (G.28)

Following steps analogous to those we follow to derive the inequality in equation (G.21) from

that in equation (G.16) (see Appendix G.3.1), we derive the following inequality from that

in equation (G.28), where ∆ṽll
1

ist is defined as in equation (G.22):

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq ` ∆ṽll
1

istq|Wist,Wjrts ě 0. (G.29)

This inequality is one of the two we combine to obtain the inequality that we use to bound

the parameters θα and θβ. To obtain the one, we start with the following expression

ylistpy
l
jrt ` yl

1

jrtqp1tEr∆vl
1l
jrt|Wjrts ` ∆εl

1l
jrt ě 0u ´ yl

1

jrtq “ 0. (G.30)

Following the same steps we use to go from equation (G.24) to (G.29), we derive from equation

(G.30) the following inequality

Eryl
1

isty
l1

jrt ` ylisty
l1

jrt expp´ell
1

ijsrtqp´p1 ` ell
1

ijsrtq ` ∆ṽl
1l
jrtq|Wist,Wjrts ě 0. (G.31)

As the moments in equations (G.28) and (G.31) share the same function gll
1

ijsrt : Zst ˆ Zrt ˆ

Θpα,βq Ñ R and the same conditioning set, we add them to obtain:

Erylisty
l
jrt ` yl

1

isty
l1

jrt ´ ylisty
l1

jrt expp´ell
1

ijsrtqp2 ` 2ell
1

ijsrt ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|Wist,Wjrts ě 0,

with

∆ṽll
1

ist “ βpxlnt ´ xl
1

ntq ` pλlt ´ λl
1

t q ` αpwlst ´ wl
1

stq ` δβ
L

ÿ

l2“1

y
pltql2

ist`1pxl
2

lt`1 ´ xl
2

l1t`1q,
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∆ṽl
1l
jrt “ βpxl

1

nt ´ xlntq ` pλl
1

t ´ λltq ` αpwl
1

rt ´ wlrtq ` δβ
L

ÿ

l2“1

y
pltql2

ist`1px
l2

l1t`1 ´ xl
2

lt`1q.

Finally, if zst Ď Wist and zrt Ď Wjrt, we can use the LIE and conclude that

Erylisty
l
jrt ` yl

1

isty
l1

jrt ´ ylisty
l1

jrt expp´ell
1

ijsrtqp2 ` 2ell
1

ijsrt ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|zst, zrts ě 0, (G.33)

with

∆ṽll
1

ist ` ∆ṽl
1l
jrt “αpwlist ´ wl

1

ist ` wl
1

jrt ´ wljrtq

` δβ
L

ÿ

l2“1

y
pltql2

ist`1px
l2

lt`1 ´ xl
2

l1t`1 ` xl
2

l1t`1 ´ xl
2

lt`1q. (G.34)

Plugging equation (G.34) into equation (G.33), we obtain a moment inequality whose moment

equals that in equation (G.13) when evaluated at pθα, θβq “ pα, βq. Equations (G.33) and

(G.34) thus imply Theorem 5. ■

G.3.4 First-Step Moment Inequalities: Additional Derivations

Derivation of optimal approximation points. Consider approximation points expressed as

ell
1

ijsrt “ gll
1

ijsrtpzst, zrt, θα, θβq. We find the value of gll
1

ijsrtpzst, zrt, θα, θβq that, given zst P Zst

and zrt P Zrt, minimizes the moment in equation (G.33) at each value of pθα, θβq. Specifically,

given zst, zrt, θα, and θβ, the first-order condition of the moment in equation (G.33) with

respect to the scalar gll
1

ijsrtpzst, zrt, θα, θβq is

Erylisty
l1

jrtp2g
ll1

ijsrtpzst, zrt, θα, θβq ´ p∆ṽll
1

ist ` ∆ṽl
1l
jrtqq|zs, zrs “ 0,

or, equivalently, Er2gll
1

ijsrtpzst, zrt, θα, θβq ´ p∆ṽll
1

ist `∆ṽl
1l
jrtq|zst, zrt, y

l
isty

l1

jrt “ 1s “ 0. Solving for

gll
1

ijsrtpzst, zrt, θα, θβq, we obtain:

gll
1

ijsrtpzst, zrt, θα, θβq “ Er∆ṽll
1

ist ` ∆ṽl
1l
jrt|zst, y

l
ist “ 1s, (G.35)

with ∆ṽll
1

ist ` ∆ṽl
1l
jrt defined as in equation (G.34).
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